Skip to main content

Mixed Integer Programming for Searching Maximum Quasi-Bicliques

  • Conference paper
  • First Online:
Network Algorithms, Data Mining, and Applications (NET 2018)

Abstract

This paper is related to the problem of finding the maximal quasi-bicliques in a bipartite graph (bigraph). A quasi-biclique in the bigraph is its “almost” complete subgraph. The relaxation of completeness can be understood variously; here, we assume that the subgraph is a \(\gamma \)-quasi-biclique if it lacks a certain number of edges to form a biclique such that its density is at least \(\gamma \in (0,1]\). For a bigraph and fixed \(\gamma \), the problem of searching for the maximal quasi-biclique consists of finding a subset of vertices of the bigraph such that the induced subgraph is a quasi-biclique and its size is maximal for a given graph. Several models based on Mixed Integer Programming (MIP) to search for a quasi-biclique are proposed and tested for working efficiency. An alternative model inspired by biclustering is formulated and tested; this model simultaneously maximises both the size of the quasi-biclique and its density, using the least-square criterion similar to the one exploited by triclustering TriBox.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CPLEX user manual: https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.cplex.help/CPLEX/homepages/usrmancplex.html.

  2. 2.

    The size column in Table 3 shown as the result of summation \(|U'|\) and \(|V'|\).

References

  1. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Rajsbaum, S. (ed.) LATIN 2002: Theoretical Informatics, pp. 598–612. Springer, Berlin (2002)

    Google Scholar 

  2. Batagelj, V., Mrvar, A.: Pajek. In: Encyclopedia of Social Network Analysis and Mining, pp. 1245–1256 (2014). https://doi.org/10.1007/978-1-4614-6170-8_310

  3. Belohlávek, R., Outrata, J., Trnecka, M.: Factorizing boolean matrices using formal concepts and iterative usage of essential entries. Inf. Sci. 489, 37–49 (2019). https://doi.org/10.1016/j.ins.2019.03.001

  4. Besson, J., Robardet, C., Boulicaut, J.: Mining a new fault-tolerant pattern type as an alternative to formal concept discovery. In: Conceptual Structures: Inspiration and Application, 14th International Conference on Conceptual Structures, ICCS 2006, Aalborg, Denmark, July 16–21, 2006, Proceedings, pp. 144–157 (2006). https://doi.org/10.1007/11787181_11

  5. Borgatti, S.P., Everett, M.G., Freeman, L.C.: UCINET. In: Encyclopedia of Social Network Analysis and Mining, pp. 2261–2267 (2014). https://doi.org/10.1007/978-1-4614-6170-8_316

  6. Freeman, L.C.: Finding social groups: A meta-analysis of the southern women data. In: Breiger, R., Carley, K., Pattison, P. (eds.) Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers, National Academies Press (2003)

    Google Scholar 

  7. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4):19:1–19:19 (2015). https://doi.org/10.1145/2827872

  8. Ignatov, D.I., Kuznetsov, S.O., Poelmans, J.: Concept-based biclustering for internet advertisement. In: 12th IEEE International Conference on Data Mining Workshops, ICDM Workshops, Brussels, Belgium, 10 Dec 2012, pp. 123–130 (2012). https://doi.org/10.1109/ICDMW.2012.100

  9. Ignatov, D.I., Gnatyshak, D.V., Kuznetsov, S.O., Mirkin, B.G.: Triadic formal concept analysis and triclustering: searching for optimal patterns. Mach. Learn. 101(1), 271–302 (2015). https://doi.org/10.1007/s10994-015-5487-y

  10. Ignatov, D.I., Semenov, A., Komissarova, D., Gnatyshak, D.V.: Multimodal clustering for community detection. In: Formal Concept Analysis of Social Networks, pp. 59–96 (2017). https://doi.org/10.1007/978-3-319-64167-6_4

  11. Liu, H.B., Liu, J., Wang, L.: Searching maximum quasi-bicliques from protein-protein interaction network. J. Biomed. Sci. Eng. 1(03), 200 (2008a)

    Article  Google Scholar 

  12. Liu, X., Li, J., Wang, L.: Quasi-bicliques: complexity and binding pairs. In: Hu, X., Wang, J. (eds.) Computing and Combinatorics, pp. 255–264. Springer, Berlin Heidelberg, Berlin, Heidelberg (2008b)

    Chapter  Google Scholar 

  13. Miettinen, P.: Fully dynamic quasi-biclique edge covers via boolean matrix factorizations. In: Proceedings of the Workshop on Dynamic Networks Management and Mining, pp. 17–24. ACM, New York, NY, USA, DyNetMM ’13 (2013). https://doi.org/10.1145/2489247.2489250

  14. Mirkin. B.G., Kramarenko, A.V.: Approximate bicluster and tricluster boxes in the analysis of binary data. In: Rough Sets, Fuzzy Sets, Data Mining and Granular Computing - 13th International Conference, RSFDGrC 2011, pp. 248–256. Moscow, Russia, 25–27 June 2011. Proceedings (2011). https://doi.org/10.1007/978-3-642-21881-1_40

  15. Pattillo, J., Veremyev, A., Butenko, S., Boginski, V.: On the maximum quasi-clique problem. Discret. Appl. Math. 161(1):244–257 (2013). https://doi.org/10.1016/j.dam.2012.07.019

  16. Peeters, R.: The maximum edge biclique problem is np-complete. Discret. Appl. Math. 131(3), 651–654 (2003). https://doi.org/10.1016/S0166-218X(03)00333-0

  17. Sim, K., Li, J., Gopalkrishnan, V., Liu, G.: Mining maximal quasi-bicliques to co-cluster stocks and financial ratios for value investment. In: Sixth International Conference on Data Mining (ICDM’06), pp. 1059–1063 (2006). https://doi.org/10.1109/ICDM.2006.111

  18. Veremyev, A., Prokopyev, O.A., Butenko, S., Pasiliao, E.L.: Exact mip-based approaches for finding maximum quasi-cliques and dense subgraphs. Comp. Opt. Appl. 64(1), 177–214 (2016). https://doi.org/10.1007/s10589-015-9804-y

  19. Wang, L.: Near optimal solutions for maximum quasi-bicliques. J. Comb. Optim. 25(3), 481–497 (2013). https://doi.org/10.1007/s10878-011-9392-4

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Dmitry I. Ignatov shown in all the sections, except 5 and 6, has been supported by the Russian Science Foundation grant no. 17-11-01276 and performed at St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Russia. The authors would like to thank Boris Mirkin, Vladimir Kalyagin, Panos Pardalos, and Oleg Prokopyev for their piece of advice and inspirational discussions. Last but not least, we are thankful to anonymous reviewers for their useful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry I. Ignatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ignatov, D.I., Ivanova, P., Zamaletdinova, A. (2020). Mixed Integer Programming for Searching Maximum Quasi-Bicliques. In: Bychkov, I., Kalyagin, V., Pardalos, P., Prokopyev, O. (eds) Network Algorithms, Data Mining, and Applications. NET 2018. Springer Proceedings in Mathematics & Statistics, vol 315. Springer, Cham. https://doi.org/10.1007/978-3-030-37157-9_2

Download citation

Publish with us

Policies and ethics