Skip to main content

Floating Zone Method, Edge-Defined Film-Fed Growth Method, and Wafer Manufacturing

  • Chapter
  • First Online:
Gallium Oxide

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 293))

Abstract

This chapter describes the floating zone growth method of β-Ga2O3, the edge-defined film-fed growth of β-Ga2O3, and the manufacturing of β-Ga2O3 wafers . The floating zone method section briefly mentions the method’s history and typical growth conditions. The section on edge-defined film-fed growth method discusses the history, growth sequence, and conditions. It also covers the material properties of edge-defined film-fed grown β-Ga2O3 such as twin boundaries , dislocations , nanovoids , residual impurities , intentional doping , and dopant distribution . The wafer manufacturing section describes the basic wafer process and the effect of annealing on carrier concentration .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Vivien, B. Viana, A. Revcolevschi, J.D. Barrie, B. Dunn, P. Nelson, O.M. Stafsudd, J. Lumin. 39, 29 (1987)

    Article  CAS  Google Scholar 

  2. N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, Appl. Phys. Lett. 70, 3561 (1997)

    Article  CAS  Google Scholar 

  3. Y. Tomm, J.M. Ko, A. Yoshikawa, T. Fukuda, Sol. Energy Mater. Sol. Cells 66, 369 (2001)

    Article  CAS  Google Scholar 

  4. E.G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose, J. Cryst. Growth 270, 420 (2004)

    Article  Google Scholar 

  5. J. Zhang, B. Li, C. Xia, G. Pei, Q. Deng, Z. Yang, W. Xu, H. Shi, F. Wu, Y. Wu, J. Xu, J. Phys. Chem. Solids 67, 2448 (2006)

    Article  CAS  Google Scholar 

  6. N. Suzuki, S. Ohira, M. Tanaka, T. Sugawara, K. Nakajima, T. Shishido, Phys. Status Solidi C 4, 2310 (2007)

    Article  CAS  Google Scholar 

  7. S. Ohira, N. Suzuki, N. Arai, M. Tanaka, T. Sugawara, K. Nakajima, T. Shishido, Thin Solid Films 516, 5763 (2008)

    Article  CAS  Google Scholar 

  8. E.G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, K. Aoki, Appl. Phys. Lett. 92, 202120 (2008)

    Article  Google Scholar 

  9. H.E. LaBelle Jr., A.I. Mlavsky, Mat. Res. Bull. 6, 571 (1971)

    Article  CAS  Google Scholar 

  10. H.E. LaBelle Jr., Mat. Res. Bull. 6, 581 (1971)

    Article  CAS  Google Scholar 

  11. B. Chalmers, H.E. LaBelle Jr., A.I. Mlavsky, Mat. Res. Bull. 6, 681 (1971)

    Article  CAS  Google Scholar 

  12. H. Machida, K. Hoshikawa, T. Fukuda, Jpn. J. Appl. Phys. 31, L974 (1992)

    Article  CAS  Google Scholar 

  13. K.V. Ravi, J. Cryst. Growth 39, 1 (1977)

    Article  CAS  Google Scholar 

  14. T.F. Ciszek, G.H. Schwuttke, K.H. Yang, J. Cryst. Growth 50, 160 (1980)

    Article  CAS  Google Scholar 

  15. K. Shimamura, E.G. Víllora, K. Muramatsu, K. Aoki, M. Nakamura, S. Takekawa, N. Ichinose, K. Kitamura, Nihon Kessho Seicho Gakkaishi 33, 147 (2006). [in Japanese]

    Google Scholar 

  16. H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, Y. Yaguchi, Jpn. J. Appl. Phys. 47, 8506 (2008)

    Article  CAS  Google Scholar 

  17. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masu, and S. Yamakoshi, Jpn. J. Appl. Phys. 55, 1202A2 (2016)

    Google Scholar 

  18. A. Kuramata to be submitted

    Google Scholar 

  19. O. Ueda, N. Ikenaga, K. Koshi, K. Iizuka, A. Kuramata, K. Hanada, T. Moribayashi, S. Yamakoshi, and M. Kasu, Jpn. J. Appl. Phys. 55, 1202BD (2016)

    Google Scholar 

  20. K. Nakai, T. Nagai, K. Noami, T. Futagi, Jpn. J. Appl. Phys. 54, 051103 (2015)

    Article  Google Scholar 

  21. K. Hanada, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, and M. Kasu, Jpn. J. Appl. Phys. 55, 1202BG (2016)

    Google Scholar 

  22. T. Oshima, K. Kaminaga, A. Mukai, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, S. Fujit, A. Ohtomo, Jpn. J. Appl. Phys. 52, 051101 (2013)

    Article  Google Scholar 

  23. Z. Galazka, K. Irmscher, R. Uecher, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, M. Bickermann, J. Cryst. Growth 404, 184 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akito Kuramata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuramata, A., Koshi, K., Watanabe, S., Yamaoka, Y. (2020). Floating Zone Method, Edge-Defined Film-Fed Growth Method, and Wafer Manufacturing. In: Higashiwaki, M., Fujita, S. (eds) Gallium Oxide. Springer Series in Materials Science, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-37153-1_4

Download citation

Publish with us

Policies and ethics