Skip to main content

What is the Monodromy Property for Degenerations of Calabi-Yau Varieties?

  • Chapter
  • First Online:
Birational Geometry and Moduli Spaces

Part of the book series: Springer INdAM Series ((SINDAMS,volume 39))

  • 685 Accesses

Abstract

In this survey, we discuss the state of art about the monodromy property for Calabi-Yau varieties. We explain what is the monodromy property for Calabi-Yau varieties and then discuss some examples of Calabi-Yau varieties that satisfy this property. After this recap, we discuss a possible approach to future research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borisov, L.A.: The class of the affine line is a zero divisor in the Grothendieck ring. J. Algebraic Geom. 27(2), 203–209 (2018)

    Article  MathSciNet  Google Scholar 

  2. Bultot, E., Nicaise, J.: Computing zeta functions on log smooth models. C. R. Math. Acad. Sci. Paris 353(3), 261–264 (2015)

    Article  MathSciNet  Google Scholar 

  3. Cauwbergs, T.: Splicing motivic zeta functions. Rev. Mat. Complut. 29(2), 455–483 (2016)

    Article  MathSciNet  Google Scholar 

  4. Crauder, B., Morrison, D.R.: Triple-point-free degenerations of surfaces with Kodaira number zero. In: The Birational Geometry of Degenerations (Cambridge, Mass, 1981). Progress in Mathematics, vol. 29, pp. 353–386. Birkhäuser, Boston (1983)

    Google Scholar 

  5. Crauder, B., Morrison, D.R.: Minimal models and degenerations of surfaces with Kodaira number zero. Trans. Am. Math. Soc. 343(2), 525–558 (1994)

    Article  MathSciNet  Google Scholar 

  6. Denef, J., Loeser, F.: Motivic Igusa zeta functions. J. Algebraic Geom. 7(3), 505–537 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Ekedahl, T.: The Grothendieck group of algebraic stacks. arXiv:0903.3143 [math.AG] (2009)

    Google Scholar 

  8. Halvard Halle, L., Nicaise, J.: Motivic zeta functions of abelian varieties, and the monodromy conjecture. Adv. Math. 227(1), 610–653 (2011)

    Article  MathSciNet  Google Scholar 

  9. Halvard Halle, L., Nicaise, J.: Motivic zeta functions of degenerating Calabi-Yau varieties. Math. Ann. 370(3–4), 1277–1320 (2018)

    Article  MathSciNet  Google Scholar 

  10. Hartmann, A.: The quotient map on the equivariant Grothendieck ring of varieties. Manuscripta Math. 151(3–4), 419–451 (2016)

    Article  MathSciNet  Google Scholar 

  11. Jaspers, A.: The global monodromy property for K3 surfaces allowing a triple-point-free model. C. R. Math. Acad. Sci. Paris 355(2), 200–204 (2017)

    Article  MathSciNet  Google Scholar 

  12. Jaspers, A.: The Monodromy Property for K3 Surfaces Allowing a Triple-Point-Free Model (2017). Ph. D. Thesis, KU Leuven. arXiv:1706.07086

    Google Scholar 

  13. Kempf, G. Knudsen, F.F., Mumford, D., Saint-Donat, B.: Toroidal Embeddings. I. Lecture Notes in Mathematics, vol. 339. Springer, Berlin (1973)

    Google Scholar 

  14. Liedtke, C., Matsumoto, Y.: Good reduction of K3 surfaces. Compos. Math. 154(1), 1–35 (2018)

    Article  MathSciNet  Google Scholar 

  15. Lunardon, L.: The monodromy property for certain families of K3 surfaces and higher dimesional Calabi-Yau varieties, Ph.D. Thesis, Imperial College London (2020)

    Google Scholar 

  16. Nicaise, J.: Geometric criteria for tame ramification. Math. Z. 273(3–4), 839–868 (2013)

    Article  MathSciNet  Google Scholar 

  17. Nicaise, J., Xu, C.: Poles of maximal order of motivic zeta functions. Duke Math. J. 165(2), 217–243 (2016)

    Article  MathSciNet  Google Scholar 

  18. Overkamp, O.: Degeneration of Kummer surfaces. arXiv:1806.10105 [math.AG] (2018)

    Google Scholar 

  19. Poonen, B.: The Grothendieck ring of varieties is not a domain. Math. Res. Lett. 9(4), 493–497 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. J. Nicaise for his help during the preparation of this paper. This work was supported by the Engineering and Physical Sciences Research Council [EP/L015234/1]. The EPSRC Centre for Doctoral Training in Geometry and Number Theory (The London School of Geometry and Number Theory), University College London

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Lunardon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lunardon, L. (2020). What is the Monodromy Property for Degenerations of Calabi-Yau Varieties?. In: Colombo, E., Fantechi, B., Frediani, P., Iacono, D., Pardini, R. (eds) Birational Geometry and Moduli Spaces. Springer INdAM Series, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-37114-2_8

Download citation

Publish with us

Policies and ethics