Skip to main content

Negative Rational Curves and Their Deformations on Hyperkähler Manifolds

  • Chapter
  • First Online:
Birational Geometry and Moduli Spaces

Part of the book series: Springer INdAM Series ((SINDAMS,volume 39))

  • 706 Accesses

Abstract

We survey some results about rational curves on hyperkähler manifolds, explaining how to prove a certain deformation-invariance statement for loci covered by rational curves with negative Beauville–Bogomolov square.

The results presented at the INDAM workshop and in this survey have been obtained jointly with M. Verbitsky.

Partially supported by Brazilian-French network in Mathematics, partially supported by the Russian Academic Excellence Project ‘5-100’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    On an arbitrary deformation, an MBM class would be, up to a multiple, represented by a possibly reducible rational curve, but the converse is in general false.

References

  1. Amerik, E., Verbitsky, M.: Rational curves on hyperkähler manifolds. Int. Math. Res. Not. 2015(23), 13009–13045 (2015)

    MATH  Google Scholar 

  2. Amerik, E., Verbitsky, M.: MBM loci in families of hyperkahler manifolds and centers of birational contractions (2018). arXiv:1804.00463

    Google Scholar 

  3. Amerik, E., Verbitsky, M.: Contraction centers in families of hyperkähler manifolds (2019). arXiv:1903.04884

    Google Scholar 

  4. Bakker, B., Lehn, C.: A global Torelli theorem for singular symplectic varieties (2016). arXiv:1612.07894

    Google Scholar 

  5. Beauville, A.: Variétés dont la première classe de Chern est nulle. J. Differ. Geom. 18, 755–782 (1983)

    Article  Google Scholar 

  6. Huybrechts, D.: Compact hyperkähler manifolds: basic results. Invent. Math. 135, 63–113 (1999)

    Article  MathSciNet  Google Scholar 

  7. Huybrechts, D.: Finiteness results for compact hyperkähler manifolds. J. Reine Angew. Math. 558, 15–22 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Kawamata, Y.: On the length of an extremal rational curve. Invent. Math. 105(3), 609–611 (1991)

    Article  MathSciNet  Google Scholar 

  9. Looijenga, E., Peters, C.: Torelli theorems for Kähler K3 surfaces. Compos. Math. 42(2), 145–186 (1980/1981)

    MATH  Google Scholar 

  10. Mather, J.: Notes on Topological Stability. Harvard University, Cambridge (1970)

    MATH  Google Scholar 

  11. Mongardi, G.: A note on the Kähler and Mori cones of hyperkähler manifolds. Asian J. Math. 19(4), 583–591 (2015)

    Article  MathSciNet  Google Scholar 

  12. Morris, D.W.: Ratner’s Theorems on Unipotent Flows. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (2005)

    MATH  Google Scholar 

  13. O’Grady, K.: Higher-dimensional analogues of K3 surfaces. In: Current Developments in Algebraic Geometry. Mathematical Sciences Research Institute Publications, vol. 59, pp. 257–293. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  14. Pjateckii-Shapiro, I.I., Shafarevich, I.R.: Torelli’s theorem for algebraic surfaces of type K3. Izv. Akad. Nauk SSSR Ser. Mat. 35, 530–572 (1971)

    MathSciNet  Google Scholar 

  15. Ran, Z.: Hodge theory and deformations of maps. Compos. Math. 97(3), 309–328 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Ratner, M.: Raghunathan’s topological conjecture and distributions of unipotent flows. Duke Math. J. 63(1), 235–280 (1991)

    Article  MathSciNet  Google Scholar 

  17. Todorov, A.: The Weil-Petersson geometry of the moduli space of SU(n ≥ 3) (Calabi–Yau) manifolds. I. Commun. Math. Phys. 126(2), 325–346 (1989)

    Article  MathSciNet  Google Scholar 

  18. Verbitsky, M.: Mapping class group and a global Torelli theorem for hyperkähler manifolds. Duke Math. J. 162(15), 2929–2986 (2013)

    Article  MathSciNet  Google Scholar 

  19. Verbitsky, M.: Ergodic complex structures on hyperkähler manifolds. Acta Math. 215(1), 161–182 (2015)

    Article  MathSciNet  Google Scholar 

  20. Verbitsky, M.: Ergodic complex structures on hyperkahler manifolds: an erratum (2017). arXiv:1708.05802

    Google Scholar 

  21. Verdier, J.-L.: Stratifications de Whitney et théorème de Bertini-Sard. Invent. Math. 36, 295–312 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Amerik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amerik, E. (2020). Negative Rational Curves and Their Deformations on Hyperkähler Manifolds. In: Colombo, E., Fantechi, B., Frediani, P., Iacono, D., Pardini, R. (eds) Birational Geometry and Moduli Spaces. Springer INdAM Series, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-37114-2_1

Download citation

Publish with us

Policies and ethics