Skip to main content

The Number Theory of Superstring Amplitudes

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 314))

Abstract

The following article is intended as a survey of recent results at the interface of number theory and superstring theory. We review the expansion of scattering amplitudes—central observables in field and string theory—in the inverse string tension where elegant patterns of multiple zeta values occur. More specifically, the Drinfeld associator and the Hopf algebra structure of motivic multiple zeta values are shown to govern tree-level amplitudes of the open superstring. Partial results on the quantum corrections are discussed where elliptic analogues of multiple zeta values play a central r\(\hat{\text {o}}\)le.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The terminology here and in later places relies on the commonly trusted conjectures on the transcendentality of MZVs.

  2. 2.

    The sign convention for \(e_1\) varies in the literature.

  3. 3.

    In the original disk integrals (2), rearranging the curly bracket of the integrand as

    $$ \prod ^{n-2}_{l=2} \sum ^{l-1}_{m=1} {s_{ml} \over z_{ml}} \rightarrow \prod ^{\nu }_{l=2} \sum ^{l-1}_{m=1} {s_{ml} \over z_{ml}} \prod ^{n-2}_{p=\nu +1} \sum ^{n-1}_{q=p+1} {s_{pq} \over z_{pq}} $$

    amounts to adding total derivatives w.r.t. \(z_2,\ldots ,z_{n-2}\) which vanish in presence of the Koba-Nielsen factor \(\prod _{i<j}^{n-1} |z_{ij}|^{s_{ij}}\). Tentative boundary contributions at \(z_j=z_{j\pm 1}\) are manifestly suppressed by \(|z_j - z_{j\pm 1}|^{s_{j,j\pm 1}}\) for positive real part of \(s_{j,j\pm 1}\) which propagates to generic complex values by analytic continuation.

  4. 4.

    The derivative w.r.t. \(z_0\) directly acts at the level of the integrand since the boundary contribution from the \(z_0\)-dependence in the upper limit is suppressed as \(\lim _{z_{n-2} \rightarrow z_0} (z_0 - z_{n-2})^{s_{0,n-2}} = 0\). As before, the limit is obvious if \(s_{0,n-2}\) has a positive real part and otherwise follows from analytic continuation.

  5. 5.

    Also, none of the odd \(\zeta \)-values has been proven to be transcendental so far: the only known facts are the irrationality of \(\zeta _3\) as well as the existence of an infinite number of odd irrational \(\zeta \)’s [36, 37].

  6. 6.

    In the pure spinor framework [19], kinematic building blocks suitable to describe the anomaly sector have been constructed in [56], see [57] for their appearance in the integrand of ten-dimensional field-theory amplitudes.

  7. 7.

    A set of indecomposable eMZVs of weight w and length r is a minimal set of eMZVs such that any other eMZV of the same weight and length can be expressed as a linear combination of elements from this set as well as products of eMZVs with strictly positive weights and eMZVs of lengths smaller than r or weight lower than w. The coefficients are understood to comprise MZVs (including rational numbers) and integer powers of \(2\pi i\).

References

  1. Di Vecchia, P.: The Birth of string theory. Lect. Notes Phys. 737, 59 (2008). arXiv:0704.0101 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  2. Vafa, C.: Lectures on strings and dualities. [hep-th/9702201]

    Google Scholar 

  3. Lüst, D., Stieberger, S., Taylor, T.R.: The LHC string Hunter’s companion. Nucl. Phys. B 808, 1 (2009). arXiv:0807.3333 [hep-th]

    Article  MATH  Google Scholar 

  4. Lüst, D., Schlotterer, O., Stieberger, S., Taylor, T.R.: The LHC string Hunter’s companion (II): five-particle amplitudes and universal properties. Nucl. Phys. B 828, 139 (2010). arXiv:0908.0409 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  5. Feng, W.Z., Lüst, D., Schlotterer, O., Stieberger, S., Taylor, T.R.: Direct production of lightest regge resonances. Nucl. Phys. B 843, 570 (2011). arXiv:1007.5254 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  6. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263 (1998). [hep-ph/9803315]

    Article  MATH  Google Scholar 

  7. Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 436, 257 (1998). [hep-ph/9804398]

    Article  MATH  Google Scholar 

  8. Green, M.B., Schwarz, J.H., Brink, L.: N = 4 Yang-Mills and N = 8 Supergravity as Limits of String Theories. Nucl. Phys. B 198, 474 (1982)

    Article  Google Scholar 

  9. Kawai, H., Lewellen, D.C., Tye, S.H.H.: A relation between tree amplitudes of closed and open strings. Nucl. Phys. B 269, 1 (1986)

    Article  MathSciNet  Google Scholar 

  10. Bjerrum-Bohr, N.E.J., Damgaard, P.H., Vanhove, P.: Minimal basis for gauge theory amplitudes. Phys. Rev. Lett. 103, 161602 (2009). arXiv:0907.1425 [hep-th]

    Article  MathSciNet  Google Scholar 

  11. Stieberger, S.: Open & Closed vs. Pure Open String Disk Amplitudes. arXiv:0907.2211 [hep-th]

  12. Drummond, J.M., Ragoucy, E.: Superstring amplitudes and the associator. JHEP 1308, 135 (2013). arXiv:1301.0794 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  13. Broedel, J., Schlotterer, O., Stieberger, S., Terasoma, T.: All order \(\alpha ^{\prime }\)-expansion of superstring trees from the Drinfeld associator. Phys. Rev. D 89(6), 066014 (2014) arXiv:1304.7304 [hep-th]

  14. Schlotterer, O., Stieberger, S.: Motivic multiple zeta values and superstring amplitudes. J. Phys. A 46, 475401 (2013). arXiv:1205.1516 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  15. Stieberger, S.: Closed superstring amplitudes, single-valued multiple zeta values and the Deligne associator. J. Phys. A 47, 155401 (2014). arXiv:1310.3259 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  16. Broedel, J., Mafra, C.R., Matthes, N., Schlotterer, O.: Elliptic multiple zeta values and one-loop superstring amplitudes. JHEP 1507, 112 (2015). arXiv:1412.5535 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  17. Enriquez, B.: Analogues elliptiques des nombres multizétas. Bull. Soc. Math. France 144, 395–427 (2016). arxiv:1301.3042

    Article  MathSciNet  MATH  Google Scholar 

  18. Enriquez, B.: Elliptic associators. Selecta Math. (N.S.) 20, 491 (2014)

    Google Scholar 

  19. Berkovits, N.: Super Poincare covariant quantization of the superstring. JHEP 0004, 018 (2000). [hep-th/0001035]

    Article  MathSciNet  MATH  Google Scholar 

  20. Mafra, C.R., Schlotterer, O., Stieberger, S.: Complete N-point superstring disk amplitude I. Pure Spinor computation. Nucl. Phys. B 873, 419 (2013) arXiv:1106.2645 [hep-th]

  21. Drinfeld, V.G.: Quasi Hopf algebras. Leningrad Math. J 1, 1419 (1989)

    MathSciNet  Google Scholar 

  22. Drinfeld, V.G.: On quasitriangular quasi-Hopf algebras and a group that is closely connected with Gal(\(\bar{\mathbb{Q}}/{\mathbb{Q}}\)). Leningrad Math. J 2(4), 829(1991)

    Google Scholar 

  23. Racinet, G.: Doubles mélanges des polylogarithmes multiples aux racines de l?unité. Publ. Math. Inst. Hautes Etudes Sci. 185 (2002)

    Google Scholar 

  24. Le, T., Murakami, J.: Kontsevich’s integral for the Kauffman polynomial. Nagoya Math J. 142, 93 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Terasoma, T.: Selberg Integrals and Multiple Zeta Values. Compositio Mathematica 133, 1 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Barreiro, L.A., Medina, R.: 5-field terms in the open superstring effective action. JHEP 0503, 055 (2005). [hep-th/0503182]

    Article  MathSciNet  Google Scholar 

  27. Oprisa, D., Stieberger, S.: Six gluon open superstring disk amplitude, multiple hypergeometric series and Euler-Zagier sums. hep-th/0509042

    Google Scholar 

  28. Stieberger, S., Taylor, T.R.: Multi-gluon scattering in open superstring theory. Phys. Rev. D 74, 126007 (2006). [hep-th/0609175]

    Article  MathSciNet  Google Scholar 

  29. Boels, R.H.: On the field theory expansion of superstring five point amplitudes. Nucl. Phys. B 876, 215 (2013). arXiv:1304.7918 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  30. Puhlfuerst, G., Stieberger, S.: Differential equations, associators, and recurrences for amplitudes. Nucl. Phys. B 902, 186 (2016). arXiv:1507.01582 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  31. Broedel, J., Schlotterer, O., Stieberger, S. http://mzv.mpp.mpg.de

  32. Mafra, C.R., Schlotterer, O., Stieberger, S.: Complete N-point superstring disk amplitude II. Amplitude and Hypergeometric Function Structure. Nucl. Phys. B 873, 461 (2013) arXiv:1106.2646 [hep-th]

  33. Broedel, J., Schlotterer, O., Stieberger, S.: Polylogarithms, multiple zeta values and superstring amplitudes. Fortsch. Phys. 61, 812 (2013). arXiv:1304.7267 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  34. Brown, F.: Mixed Tate motives over \(\mathbb{Z}\). Ann. Math. 175, 949 (2012)

    Google Scholar 

  35. Bern, Z., Carrasco, J.J.M., Johansson, H.: New relations for gauge-theory amplitudes. Phys. Rev. D 78, 085011 (2008). arXiv:0805.3993 [hep-ph]

    Article  MathSciNet  Google Scholar 

  36. Apéry, R.: Irrationalité de \(\zeta (2)\) et \(\zeta (3)\). Astérisque 61, 11 (1979)

    MATH  Google Scholar 

  37. Ball, K., Rivoal, T.: Irrationalité d’une infinité de valeurs de la fonction zeta aux entiers impairs. Invent. Math. 146, 193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Blumlein, J., Broadhurst, D.J., Vermaseren, J.A.M.: The multiple zeta value data mine. Comput. Phys. Commun. 181, 582 (2010). arXiv:0907.2557 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  39. Zagier, D.: Values of zeta functions and their applications. In: First European Congress of Mathematics, Vol. II (Paris, 1992) Birkhaeuser, Basel, p. 497 (1994)

    Google Scholar 

  40. Goncharov, A.B.: Galois symmetries of fundamental groupoids and noncommutative geometry. Duke Math. J. 128, 209 (2005). [math/0208144]

    Article  MathSciNet  MATH  Google Scholar 

  41. Brown, F.: Motivic Periods and the Projective Line minus Three Points. ICM14 arXiv:1304.7267

  42. Brown, F.: Single-valued motivic periods and multiple zeta values. SIGMA 2, e25 (2014). arXiv:1309.5309 [math.NT]

    MathSciNet  MATH  Google Scholar 

  43. Brown, F.: On the decomposition of motivic multiple zeta values. In: Galois-Teichmüller theory and arithmetic geometry, Adv. Stud. Pure Math. 63, 31–58 (2012) arXiv:1102.1310

  44. Bern, Z., Dixon, L.J., Perelstein, M., Rozowsky, J.S.: Multileg one loop gravity amplitudes from gauge theory. Nucl. Phys. B 546, 423 (1999). [hep-th/9811140]

    Article  MATH  Google Scholar 

  45. Bjerrum-Bohr, N.E.J., Damgaard, P.H., Sondergaard, T., Vanhove, P.: The momentum kernel of gauge and gravity theories. JHEP 1101, 001 (2011). arXiv:1010.3933 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  46. Schnetz, O.: Graphical functions and single-valued multiple polylogarithms. Commun. Num. Theor. Phys. 08, 589 (2014). arXiv:1302.6445 [math.NT]

    Article  MathSciNet  MATH  Google Scholar 

  47. Stieberger, S., Taylor, T.R.: Closed string amplitudes as single-valued open string amplitudes. Nucl. Phys. B 881, 269 (2014). arXiv:1401.1218 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  48. Green, M.B., Schwarz, J.H.: Infinity cancellations in \(SO(32)\) superstring theory. Phys. Lett. B 151, 21 (1985)

    Article  MathSciNet  Google Scholar 

  49. Green, M.B., Schwarz, J.H.: Anomaly cancellation in supersymmetric \(D=10\) gauge theory and superstring theory. Phys. Lett. B 149, 117 (1984)

    Article  MathSciNet  Google Scholar 

  50. Green, M.B., Schwarz, J.H.: The Hexagon Gauge anomaly in Type I superstring theory. Nucl. Phys. B 255, 93 (1985)

    Article  MathSciNet  Google Scholar 

  51. Levin, A., Racinet, G.: Towards multiple elliptic polylogarithms (2007) [math/0703237]

    Google Scholar 

  52. Brown, F., Levin, A.: Multiple elliptic polylogarithms (2011)

    Google Scholar 

  53. Broedel, J., Matthes, N., Schlotterer, O.: Relations between elliptic multiple zeta values and a special derivation algebra. J. Phys. A 49(15), 155203 (2016) arXiv:1507.02254 [hep-th]

  54. Green, M.B., Schwarz, J.H.: Supersymmetrical dual string theory. 3. Loops and renormalization. Nucl. Phys. B 198, 441 (1982)

    Google Scholar 

  55. Mafra, C.R., Schlotterer, O.: The structure of n-point one-loop open superstring amplitudes. JHEP 1408, 099 (2014). arXiv:1203.6215 [hep-th]

    Article  Google Scholar 

  56. Mafra, C.R., Schlotterer, O.: Cohomology foundations of one-loop amplitudes in pure spinor superspace. arXiv:1408.3605 [hep-th]

  57. Mafra, C.R., Schlotterer, O.: Towards one-loop SYM amplitudes from the pure spinor BRST cohomology. Fortsch. Phys. 63(2), 105 (2015) arXiv:1410.0668 [hep-th]

  58. Matthes, N.: Elliptic double zeta values. J. Number Theory 171, 227 (2017). arXiv:1509.08760 [math-NT]

    Article  MathSciNet  MATH  Google Scholar 

  59. Manin, Y.I.: Iterated integrals of modular forms and noncommutative modular symbols. Algebraic Geom. Number Theory, 565 (2006)

    Google Scholar 

  60. Brown, F.: Multiple modular values for SL\(_2(\mathbb{Z})\) (2014)

    Google Scholar 

  61. Tsunogai, H.: On some derivations of Lie algebras related to Galois representations. Publ. Res. Inst. Math. Sci. 31, 113 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  62. Calaque, D., Enriquez, B., Etingof, P.: Universal KZB equations: the elliptic case. Progr. Math. 269, 165 (2009)

    MathSciNet  MATH  Google Scholar 

  63. Hain, R.: Notes on the universal elliptic KZB equation. arXiv:1309.0580 [math-NT]

  64. Pollack, A.: Relations between derivations arising from modular forms

    Google Scholar 

  65. Broedel, J., Matthes, N., Schlotterer, O. https://tools.aei.mpg.de/emzv

  66. Green, M.B., Gutperle, M.: Effects of D instantons. Nucl. Phys. B 498, 195 (1997). [hep-th/9701093]

    Article  MathSciNet  MATH  Google Scholar 

  67. Green, M.B., Kwon, H.H., Vanhove, P.: Two loops in eleven-dimensions. Phys. Rev. D 61, 104010 (2000) [hep-th/9910055]

    Google Scholar 

  68. Green, M.B., Vanhove, P.: Duality and higher derivative terms in M theory. JHEP 0601, 093 (2006). [hep-th/0510027]

    Article  MathSciNet  Google Scholar 

  69. Green, M.B., Russo, J.G., Vanhove, P.: Low energy expansion of the four-particle genus-one amplitude in type II superstring theory. JHEP 0802, 020 (2008). arXiv:0801.0322 [hep-th]

    Article  MathSciNet  Google Scholar 

  70. D’Hoker, E., Green, M.B., Vanhove, P.: On the modular structure of the genus-one Type II superstring low energy expansion. JHEP 1508, 041 (2015). arXiv:1502.06698 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  71. Green, M.B., Vanhove, P.: The Low-energy expansion of the one loop type II superstring amplitude. Phys. Rev. D 61, 104011 (2000). [hep-th/9910056]

    Article  MathSciNet  Google Scholar 

  72. Richards, D.M.: The One-loop five-graviton amplitude and the effective action. JHEP 0810, 042 (2008). arXiv:0807.2421 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  73. Green, M.B., Mafra, C.R., Schlotterer, O.: Multiparticle one-loop amplitudes and S-duality in closed superstring theory. JHEP 1310, 188 (2013). arXiv:1307.3534 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  74. D’Hoker, E., Green, M.B., Vanhove, P.: Proof of a modular relation between 1-, 2- and 3-loop Feynman diagrams on a torus. J. Number Theory (2018) arXiv:1509.00363 [hep-th]

  75. D’Hoker, E., Green, M.B.: Zhang-Kawazumi invariants and superstring amplitudes. J. Number Theory 144, 111 (2014). arXiv:1308.4597 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  76. D’Hoker, E., Green, M.B., Pioline, B., Russo, R.: Matching the \(D^{6}R^{4}\) interaction at two-loops. JHEP 1501, 031 (2015). arXiv:1405.6226 [hep-th]

    Article  Google Scholar 

  77. Zhang, S.W.: Gross—Schoen cycles and dualising sheaves. Inventiones Mathematicae 179, 1 (2010). arXiv:0812.0371

    Article  MathSciNet  MATH  Google Scholar 

  78. Kawazumi, N.: Johnson’s homomorphisms and the Arakelov Green function. arXiv:0801.4218 [math.GT]

Download references

Acknowledgements

I am very grateful to Johannes Broedel, Carlos Mafra, Nils Matthes, Stephan Stieberger and Tomohide Terasoma for collaboration on the projects on which this article is based. Moreover, I would like to thank Johannes Broedel, Nils Matthes and Federico Zerbini for valuable comments on the draft. I am indebted to the organizers of the conference “Numbers and Physics” in Madrid in September 2014 which strongly shaped the research directions leading to [16, 53] and possibly further results. I also acknowledge financial support by the European Research Council Advanced Grant No. 247252 of Michael Green.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Schlotterer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schlotterer, O. (2020). The Number Theory of Superstring Amplitudes. In: Burgos Gil, J., Ebrahimi-Fard, K., Gangl, H. (eds) Periods in Quantum Field Theory and Arithmetic. ICMAT-MZV 2014. Springer Proceedings in Mathematics & Statistics, vol 314. Springer, Cham. https://doi.org/10.1007/978-3-030-37031-2_4

Download citation

Publish with us

Policies and ethics