Skip to main content

Constructing Knowledge Graphs from Data Catalogues

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11969))

Abstract

We have witnessed about a decade’s effort in opening up government institutions around the world by making data about their services, performance and programmes publicly available on open data portals. While these efforts have yielded some economic and social value particularly in the context of city data ecosystems, there is a general acknowledgment that the promises of open data are far from being realised. A major barrier to better exploitation of open data is the difficulty in finding datasets of interests and those of high value on data portals. This article describes how the implicit relatedness and value of datasets can be revealed by generating a knowledge graph over data catalogues. Specifically, we generate a knowledge graph based on a self-organizing map (SOM) constructed from an open data catalogue. Following this, we show how the generated knowledge graph enables value characterisation based on sociometric profiles of the datasets as well as dataset recommendation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://dublinked.ie/.

References

  1. Ojo, A., Curry, E., Zeleti, F.A.: A tale of open data innovations in five smart cities. In: 2015 48th Hawaii International Conference on System Sciences, pp. 2326–2335 (2015)

    Google Scholar 

  2. Ojo, A., et al.: Realizing the innovation potentials from open data: stakeholders’ perspectives on the desired affordances of open data environment. In: Afsarmanesh, Hamideh, Camarinha-Matos, Luis M., Lucas Soares, António (eds.) PRO-VE 2016. IAICT, vol. 480, pp. 48–59. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45390-3_5

    Chapter  Google Scholar 

  3. Hogan, M., et al.: Governance, transparency and the collaborative design of open data collaboration platforms: understanding barriers, options, and needs BT. In: Ojo, A., Millard, J. (eds.) Government 3.0 – Next Generation Government Technology Infrastructure and Services: Roadmaps, Enabling Technologies & Challenges, pp. 299–332. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63743-3

    Chapter  Google Scholar 

  4. Sennaike, O.A., Waqar, M., Osagie, E., Hassan, I., Stasiewicz, A., Ojo, A.: Towards intelligent open data platforms, pp. 414–421, September 2017

    Google Scholar 

  5. Scarano, V., et al.: Fostering citizens’ participation and transparency with social tools and personalization. In: Ojo, A., Millard, J. (eds.) Government 3.0 – Next Generation Government Technology Infrastructure and Services: Roadmaps, Enabling Technologies & Challenges, pp. 197–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63743-3

    Chapter  Google Scholar 

  6. Ojo, A., et al.: A comprehensive architecture to support Open Data access, co-creation, and Dissemination. In: ACM International Conference Proceeding Series, pp. 0–1 (2018)

    Google Scholar 

  7. Janowski, M., Ojo, A., Curry, E., Porwol, L.: Mediating open data consumption - identifying story patterns for linked open statistical data. In: ACM International Conference Proceeding Series, vol. Part F148155, pp. 156–163 (2019)

    Google Scholar 

  8. Musa Aliyu, F., Ojo, A.: Towards building a knowledge graph with open data – a roadmap. In: AFRICOMM 2017: International Conference on e-Infrastructure and e-Services for Developing Countries, pp. 157–162 (2018)

    Google Scholar 

  9. Noy, N., Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8, 489–508 (2016)

    Article  Google Scholar 

  10. Bonatti, P.A., Decker, S., Polleres, A., Presutti, V.: Knowledge graphs: new directions for knowledge representation on the semantic web. Report from Dagstuhl Seminar, vol. 8, no. 9, pp. 29–111 (2019)

    Google Scholar 

  11. Le-Phuoc, D., Nguyen Mau Quoc, H., Ngo Quoc, H., Tran Nhat, T., Hauswirth, M.: The Graph of Things: a step towards the Live Knowledge Graph of connected things. J. Web Semant. 37–38, 25–35 (2016)

    Google Scholar 

  12. Halaschek-wiener, C., Kolovski, V.: Towards a sales assistant using a product knowledge graph. Web Semant. Sci. Serv. Agents World Wide Web 6, 171–190 (2017)

    Google Scholar 

  13. Jaradeh, M.Y., et al.: Open Research Knowledge Graph: Next Generation Infrastructure for Semantic Scholarly Knowledge (2019)

    Google Scholar 

  14. Kejriwal, M.: What is a knowledge graph? Springer Briefs in Computer Science, pp. 1–7 (2019)

    Chapter  Google Scholar 

  15. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  16. Kohonen, T., et al.: Self organization of a massive text document collection. Kohonen Maps 11(3), 171–182 (1999)

    Article  Google Scholar 

  17. Yin, H.: The self-organizing maps: background, theories, extensions and applications. Stud. Comput. Intell. 115, 715–762 (2008)

    Google Scholar 

  18. Weir, B.S., Anderson, A.D., Hepler, A.B.: Genetic relatedness analysis: Modern data and new challenges. Nat. Rev. Genet. 7(10), 771–780 (2006)

    Article  Google Scholar 

  19. Nocker, E., Bowen, H.P., Stadler, C., Matzler, K.: Capturing relatedness: comprehensive measures based on secondary data. Br. J. Manag. 27, 197–213 (2016)

    Article  Google Scholar 

  20. Budanitsky, A., Hirst, G.: Evaluating WordNet-based measures of lexical semantic relatedness. Comput. Linguist. 32(1), 13–47 (2006)

    Article  Google Scholar 

  21. Patwardhan, S., Banerjee, S., Pedersen, T.: Using measures of semantic relatedness for word sense disambiguation. In: Gelbukh, A. (ed.) CICLing 2003. LNCS, vol. 2588, pp. 241–257. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36456-0_24

    Chapter  Google Scholar 

  22. Stevenson, M., Greenwood, M.A.: A semantic approach to IE pattern induction. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics - ACL 2005 (2005)

    Google Scholar 

  23. Zhu, Y., Yan, E., Wang, F.: Semantic relatedness and similarity of biomedical terms: examining the effects of recency, size, and section of biomedical publications on the performance of word2vec. BMC Med. Inform. Decis. Mak. 17, 95 (2017)

    Article  Google Scholar 

  24. Lee, M.D., Pincombe, B., Welsh, M.: An empirical evaluation of models of text document similarity. In: Proceedings of the Annual Meeting of the Cognitive Science Society, pp. 1254–1259 (2005)

    Google Scholar 

  25. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. IJCAI Int. Jt. Conf. Artif. Intell. 7, 1606–1611 (2007)

    Google Scholar 

  26. Rybinski, M., Aldana-Montes, J.F.: tESA: a distributional measure for calculating semantic relatedness. J. Biomed. Semantics 7, 67 (2016)

    Article  Google Scholar 

  27. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  28. Shambour, Q., Lu, J.: Government-to-business personalized e-services using semantic-enhanced recommender system. In: Andersen, K.N., Francesconi, E., Grönlund, Å., van Engers, T.M. (eds.) EGOVIS 2011. LNCS, vol. 6866, pp. 197–211. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22961-9_16

    Chapter  Google Scholar 

Download references

Acknowledgment

This publication has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289_P2, co-funded by the “European Regional Development Fund”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adegboyega Ojo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ojo, A., Sennaike, O. (2020). Constructing Knowledge Graphs from Data Catalogues. In: Hung, D., D´Souza, M. (eds) Distributed Computing and Internet Technology. ICDCIT 2020. Lecture Notes in Computer Science(), vol 11969. Springer, Cham. https://doi.org/10.1007/978-3-030-36987-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36987-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36986-6

  • Online ISBN: 978-3-030-36987-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics