Skip to main content

A Hybrid Approach for Fake News Detection in Twitter Based on User Features and Graph Embedding

  • Conference paper
  • First Online:
Distributed Computing and Internet Technology (ICDCIT 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11969))

Abstract

The quest for trustworthy, reliable and efficient sources of information has been a struggle long before the era of internet. However, social media unleashed an abundance of information and neglected the establishment of competent gatekeepers that would ensure information credibility. That’s why, great research efforts sought to remedy this shortcoming and propose approaches that would enable the detection of non-credible information as well as the identification of sources of fake news. In this paper, we propose an approach which permits to evaluate information sources in term of credibility in Twitter. Our approach relies on node2vec to extract features from twitter followers/followees graph. We also incorporate user features provided by Twitter. This hybrid approach considers both the characteristics of the user and his social graph. The results show that our approach consistently and significantly outperforms existent approaches limited to user features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://snap.stanford.edu/data/ego-Twitter.html.

  2. 2.

    snap-stanford/snap: Stanford Network Analysis Platform (SNAP) is a general purpose network analysis and graph mining library.

  3. 3.

    http://compsocial.github.io/CREDBANK-data/.

  4. 4.

    Tweepy is open-sourced, hosted on GitHub and enables Python to communicate with Twitter platform and use its API.

  5. 5.

    https://networkx.github.io/.

  6. 6.

    https://gephi.org/.

  7. 7.

    https://www.mturk.com/.

References

  1. Abu-El-Haija, S., Perozzi, B., Al-Rfou, R., Alemi, A.A.: Watch your step: learning node embeddings via graph attention. In: Advances in Neural Information Processing Systems, pp. 9180–9190 (2017). abs/1710.09599

    Google Scholar 

  2. Aggarwal, G., Patel, V., Varshney, G., Oostman, K.: Understanding the social factors affecting the cryptocurrency market (2019). arXiv preprint arXiv:1901.06245

  3. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.: Distributed large-scale natural graph factorization. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 37–48. ACM (2013)

    Google Scholar 

  4. Al-Qurishi, M., Al-Rakhami, M., Alrubaian, M., Alarifi, A., Rahman, S.M.M., Alamri, A.: Selecting the best open source tools for collecting and visualzing social media content. In: 2015 2nd World Symposium on Web Applications and Networking (WSWAN), pp. 1–6. IEEE (2015)

    Google Scholar 

  5. Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2), 211–36 (2017)

    Article  Google Scholar 

  6. Alrubaian, M., Al-Qurishi, M., Alamri, A., Al-Rakhami, M., Hassan, M.M., Fortino, G.: Credibility in online social networks: a survey. IEEE Access 7, 2828–2855 (2018)

    Article  Google Scholar 

  7. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, pp. 585–591 (2002)

    Google Scholar 

  8. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Article  Google Scholar 

  9. Canini, K.R., Suh, B., Pirolli, P.L.: Finding credible information sources in social networks based on content and social structure. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, pp. 1–8. IEEE (2011)

    Google Scholar 

  10. Comin, C.H., da Fontoura Costa, L.: Identifying the starting point of a spreading process in complex networks. Phys. Rev. E 84(5), 056105 (2011)

    Article  Google Scholar 

  11. Fan, J., Upadhye, S., Worster, A.: Understanding receiver operating characteristic (ROC) curves. Can. J. Emerg. Med. 8(1), 19–20 (2006)

    Google Scholar 

  12. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  13. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl. Based Syst. 151, 78–94 (2018)

    Article  Google Scholar 

  14. Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B., Lazer, D.: Fake news on twitter during the 2016 US presidential election. Science 363(6425), 374–378 (2019)

    Article  Google Scholar 

  15. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 855–864. ACM (2016). https://doi.org/10.1145/2939672.2939754

  16. Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 729–736. ACM (2013)

    Google Scholar 

  17. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications (2017). arXiv preprint arXiv:1709.05584

  18. Hassan, N.Y., Gomaa, W.H., Khoriba, G.A., Haggag, M.H.: Supervised learning approach for twitter credibility detection. In: 2018 13th International Conference on Computer Engineering and Systems (ICCES), pp. 196–201. IEEE (2018)

    Google Scholar 

  19. Hossin, M., Sulaiman, M.: A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 5(2), 1 (2015)

    Article  Google Scholar 

  20. Jin, L., Chen, Y., Wang, T., Hui, P., Vasilakos, A.V.: Understanding user behavior in online social networks: a survey. IEEE Commun. Mag. 51(9), 144–150 (2013)

    Article  Google Scholar 

  21. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)

    Google Scholar 

  22. Kim, J., Hastak, M.: Social network analysis: characteristics of online social networks after a disaster. Int. J. Inf. Manag. 38(1), 86–96 (2018)

    Article  Google Scholar 

  23. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  24. Mcauley, J., Leskovec, J.: Discovering social circles in ego networks. ACM Trans. Knowl. Discov. Data 8(1), 4:1–4:28 (2014). https://doi.org/10.1145/2556612

    Article  Google Scholar 

  25. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013). arXiv preprint arXiv:1301.3781

  26. Mitra, T., Gilbert, E.: CREDBANK: a large-scale social media corpus with associated credibility annotations. In: Ninth International AAAI Conference on Web and Social Media (2015)

    Google Scholar 

  27. Myers, S.A., Sharma, A., Gupta, P., Lin, J.: Information network or social network? The structure of the twitter follow graph. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 493–498. ACM (2014)

    Google Scholar 

  28. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1105–1114. ACM (2016)

    Google Scholar 

  29. Paluch, R., Lu, X., Suchecki, K., Szymański, B.K., Hołyst, J.A.: Fast and accurate detection of spread source in large complex networks. Sci. Rep. 8(1), 2508 (2018)

    Article  Google Scholar 

  30. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200 (2001)

    Article  Google Scholar 

  31. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Article  Google Scholar 

  32. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 701–710 (2014). https://doi.org/10.1145/2623330.2623732

  33. SĂ¡ez-Mateu, F.: Democracy, screens, identity, and social networks: the case of Donald Trump’s election. Am. Behav. Sci. 62(3), 320–334 (2018)

    Article  Google Scholar 

  34. Seth, S.: \$9 million lost each day in cryptocurrency scams. Investopedia 13 (2018)

    Google Scholar 

  35. Shah, D., Zaman, T.: Rumor centrality: a universal source detector. In: Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS 2012, pp. 199–210 (2012). https://doi.org/10.1145/2254756.2254782

  36. Shao, C., Ciampaglia, G.L., Varol, O., Flammini, A., Menczer, F.: The spread of fake news by social bots, pp. 96–104 (2017). arXiv preprint arXiv:1707.07592

  37. Shen, F., et al.: HPO2Vec+: leveraging heterogeneous knowledge resources to enrich node embeddings for the human phenotype ontology. J. Biomed. Inform. 96, 103246 (2019). https://doi.org/10.1016/j.jbi.2019.103246

    Article  Google Scholar 

  38. Shu, K., Bernard, H.R., Liu, H.: Studying fake news via network analysis: detection and mitigation. In: Agarwal, N., Dokoohaki, N., Tokdemir, S. (eds.) Emerging Research Challenges and Opportunities in Computational Social Network Analysis and Mining. LNSN, pp. 43–65. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94105-9_3

    Chapter  Google Scholar 

  39. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. ACM SIGKDD Explor. Newslett. 19(1), 22–36 (2017)

    Article  Google Scholar 

  40. Speer, R., Havasi, C., Lieberman, H.: Analogyspace: reducing the dimensionality of common sense knowledge. In: Proceedings of the 23rd National Conference on Artificial Intelligence, AAAI 2008, pp. 548–553 (2008)

    Google Scholar 

  41. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, WWW 2015, pp. 1067–1077 (2015). https://doi.org/10.1145/2736277.2741093

  42. Tang, L., Liu, H.: Leveraging social media networks for classification. Data Min. Knowl. Disc. 23(3), 447–478 (2011)

    Article  MathSciNet  Google Scholar 

  43. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  44. Wu, L., Zhang, Y., Xie, Y., Alelaiw, A., Shen, J.: An efficient and secure identity-based authentication and key agreement protocol with user anonymity for mobile devices. Wirel. Pers. Commun. 94(4), 3371–3387 (2017). https://doi.org/10.1007/s11277-016-3781-z

    Article  Google Scholar 

  45. Yang, J., Leskovec, J.: Overlapping communities explain core-periphery organization of networks. Proc. IEEE 102(12), 1892–1902 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tarek Hamdi , Hamda Slimi or Ibrahim Bounhas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamdi, T., Slimi, H., Bounhas, I., Slimani, Y. (2020). A Hybrid Approach for Fake News Detection in Twitter Based on User Features and Graph Embedding. In: Hung, D., D´Souza, M. (eds) Distributed Computing and Internet Technology. ICDCIT 2020. Lecture Notes in Computer Science(), vol 11969. Springer, Cham. https://doi.org/10.1007/978-3-030-36987-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36987-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36986-6

  • Online ISBN: 978-3-030-36987-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics