Skip to main content

A Practical Dynamic Enhanced BFT Protocol

  • Conference paper
  • First Online:
Network and System Security (NSS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11928))

Included in the following conference series:

  • 2488 Accesses

Abstract

Emerging as a distributed system maintaining a public ledger via consensus protocol, blockchain technology is showing its great potential in various scenarios such as supply chain, financial industry, internet of things (IoT), etc. Among kinds of consensus protocols, Byzantine Fault Tolerance (BFT) protocols are playing an important part in the design of the blockchain system. Most BFT protocols, however, are static with no support for a dynamic property (i.e. nodes can join/leave a working system) and lack mechanisms to punish faulty nodes, which highly limit their wider adoption in the practical settings. This paper presents a dynamic enhanced BFT (DEBFT) protocol that is designed to support dynamic property and faulty nodes punishment. Based on HoneyBadger BFT, DEBFT employs Dynamic Threshold Identity-based Encryption and Distributed Key Generation to enable changes of the consensus group without reconfiguring the whole system, besides, evaluation metrics are also introduced to evaluate consensus nodes and clear faulty ones out of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, p. 30. ACM (2018)

    Google Scholar 

  2. Baek, J., Zheng, Y.: Simple and efficient threshold cryptosystem from the gap Diffie-Hellman group. In: 2003 Proceedings of the Global Telecommunications Conference, GLOBECOM 2003, San Francisco, CA, USA, 1–5 December 2003, pp. 1491–1495 (2003). https://doi.org/10.1109/GLOCOM.2003.1258486

  3. Baird, L.: The swirlds hashgraph consensus algorithm: fair, fast, byzantine fault tolerance. Swirlds Technical report SWIRLDS-TR-2016-01 (2016)

    Google Scholar 

  4. Bessani, A.N., Sousa, J., Alchieri, E.A.P.: State machine replication for the masses with BFT-SMART. In: 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2014, Atlanta, GA, USA, 23–26 June 2014, pp. 355–362 (2014). https://doi.org/10.1109/DSN.2014.43

  5. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the Gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3

    Chapter  Google Scholar 

  6. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008). https://doi.org/10.1007/s00145-007-9005-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Bracha, G.: Asynchronous Byzantine agreement protocols. Inf. Comput. 75(2), 130–143 (1987)

    Article  MathSciNet  Google Scholar 

  8. Castro, M., Liskov, B., et al.: Practical Byzantine fault tolerance. In: OSDI 1999, pp. 173–186 (1999)

    Google Scholar 

  9. Duan, S., Reiter, M.K., Zhang, H.: BEAT: asynchronous BFT made practical. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 2028–2041. ACM (2018)

    Google Scholar 

  10. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007). https://doi.org/10.1007/s00145-006-0347-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing bitcoin security and performance with strong consistency via collective signing. In: 25th USENIX Security Symposium, USENIX Security 2016, Austin, TX, USA, 10–12 August 2016, pp. 279–296 (2016). https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias

  12. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.L.: Zyzzyva: speculative byzantine fault tolerance. ACM Trans. Comput. Syst. 27(4), 7:1–7:39 (2009). https://doi.org/10.1145/1658357.1658358

    Article  Google Scholar 

  13. Kwon, J.: Tendermint: consensus without mining (2014). http://tendermint.com/docs/tendermint.pdf

  14. Kwon, J., Buchman, E.: Cosmos: a network of distributed ledgers (2016). https://cosmos.network/whitepaper

  15. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 17–30. ACM (2016)

    Google Scholar 

  16. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT protocols. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 31–42 (2016). https://doi.org/10.1145/2976749.2978399

  17. Mostéfaoui, A., Hamouma, M., Raynal, M.: Signature-free asynchronous byzantine consensus with \(t<n/3\) and \(o(n^2)\) messages. In: ACM Symposium on Principles of Distributed Computing, PODC 2014, Paris, France, 15–18 July 2014, pp. 2–9 (2014). https://doi.org/10.1145/2611462.2611468

  18. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). www.bitcoin.org

  19. Sousa, J., Bessani, A.: Separating the WHEAT from the chaff: an empirical design for geo-replicated state machines. In: 34th IEEE Symposium on Reliable Distributed Systems, SRDS 2015, Montreal, QC, Canada, 28 September–1 October 2015, pp. 146–155 (2015). https://doi.org/10.1109/SRDS.2015.40

  20. Susilo, W., Guo, F., Mu, Y.: Efficient dynamic threshold identity-based encryption with constant-size ciphertext. Theor. Comput. Sci. 609, 49–59 (2016). https://doi.org/10.1016/j.tcs.2015.09.006

    Article  MathSciNet  MATH  Google Scholar 

  21. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, vol. 151, pp. 1–32 (2014)

    Google Scholar 

  22. Zamani, M., Movahedi, M., Raykova, M.: RapidChain: scaling blockchain via full sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018, pp. 931–948 (2018). https://doi.org/10.1145/3243734.3243853

Download references

Acknowledgement

We would like to thank the anonymous reviewers for their helpful feedback. The authors are supported by the National Natural Science Foundation of China (Grant No. 61572318, 61932014, 61672347, 61672339), and the Shanghai Science and Technology Innovation Fund (Grant No. 19511101400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Long , Zhen Liu , Zhiqiang Liu , Dawu Gu or Ning Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, F. et al. (2019). A Practical Dynamic Enhanced BFT Protocol. In: Liu, J., Huang, X. (eds) Network and System Security. NSS 2019. Lecture Notes in Computer Science(), vol 11928. Springer, Cham. https://doi.org/10.1007/978-3-030-36938-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36938-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36937-8

  • Online ISBN: 978-3-030-36938-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics