Skip to main content

Diastolic and Systolic Dysfunction of the Heart and Thyroid Hormone Abnormalities

  • Chapter
  • First Online:
Book cover Thyroid and Heart

Abstract

Thyroid hormone (TH) has strong positive chronotropic and inotropic action on cardiac myocyte during systolic period and also enhances the duration of diastolic relaxation. Systolic and diastolic changes of the heart made by triiodothyronine (T3) is not only caused by its direct action on cardiac myocyte but also indirectly mediated by its effects on peripheral vessels and renin-angiotensin-aldosterone system (RAAS). In hyperthyroid heart, the number of β-adrenergic receptors is upregulated, causing an imbalanced sympathovagal tone. In hyperthyroidism, thyroid hormones promote the breakdown of collagen by increasing matrix metalloproteinase-1 activity, leading to hypertrophy without increased fibrosis, at least in the earlier stage. Hypothyroidism-mediated characteristic changes in the expression of cardiac genes, such as reduced levels of the sarcoplasmic reticulum Ca2+-ATPase (SERCA2), and increased expression of phospholamban, which play a significant role in regulating intracellular calcium cycling, can partly account for the decreased cardiac contractility and the abnormalities in diastolic function. Thyroid dysfunction also alters blood pressure, and hypertension combined with hypothyroidism appears to be characterized by a low-renin state. Animal models showed that administration of low-dose T3 after myocardial infarction improved cardiac structure and function, decreased the incidence of tachyarrhythmia, and reduced adverse left ventricular remodeling. The beneficial effects of thyroid hormone make it potentially attractive for the usage in the management of cardiac diastolic and systolic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mintz G, Pizzarello R, Klein I. Enhanced left ventricular diastolic function in hyperthyroidism: noninvasive assessment and response to treatment. J Clin Endocrinol Metab. 1991;73(1):146–50. https://doi.org/10.1210/jcem-73-1-146.

    Article  CAS  PubMed  Google Scholar 

  2. Hamilton MA, Stevenson LW, Luu M, Walden JA. Altered thyroid hormone metabolism in advanced heart failure. J Am Coll Cardiol. 1990;16(1):91–5.

    Article  CAS  PubMed  Google Scholar 

  3. Pingitore A, Iervasi G, Barison A, Prontera C, Pratali L, Emdin M, et al. Early activation of an altered thyroid hormone profile in asymptomatic or mildly symptomatic idiopathic left ventricular dysfunction. J Card Fail. 2006;12(7):520–6. https://doi.org/10.1016/j.cardfail.2006.05.009.

    Article  CAS  PubMed  Google Scholar 

  4. Pantos C, Dritsas A, Mourouzis I, Dimopoulos A, Karatasakis G, Athanassopoulos G, et al. Thyroid hormone is a critical determinant of myocardial performance in patients with heart failure: potential therapeutic implications. Eur J Endocrinol. 2007;157(4):515–20. https://doi.org/10.1530/EJE-07-0318.

    Article  CAS  PubMed  Google Scholar 

  5. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med. 2001;344(7):501–9. https://doi.org/10.1056/NEJM200102153440707.

    Article  CAS  PubMed  Google Scholar 

  6. Le Bouter S, Demolombe S, Chambellan A, Bellocq C, Aimond F, Toumaniantz G, et al. Microarray analysis reveals complex remodeling of cardiac ion channel expression with altered thyroid status: relation to cellular and integrated electrophysiology. Circ Res. 2003;92(2):234–42.

    Article  PubMed  Google Scholar 

  7. Carvalho-Bianco SD, Kim BW, Zhang JX, Harney JW, Ribeiro RS, Gereben B, et al. Chronic cardiac-specific thyrotoxicosis increases myocardial beta-adrenergic responsiveness. Mol Endocrinol. 2004;18(7):1840–9. https://doi.org/10.1210/me.2003-0125.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Dedkov EI, Lee B 3rd, Li Y, Pun K, Gerdes AM. Thyroid hormone replacement therapy attenuates atrial remodeling and reduces atrial fibrillation inducibility in a rat myocardial infarction-heart failure model. J Card Fail. 2014;20(12):1012–9. https://doi.org/10.1016/j.cardfail.2014.10.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Owen PJ, Sabit R, Lazarus JH. Thyroid disease and vascular function. Thyroid. 2007;17(6):519–24. https://doi.org/10.1089/thy.2007.0051.

    Article  CAS  PubMed  Google Scholar 

  10. Samuels HH, Tsai JS, Casanova J, Stanley F. Thyroid hormone action: in vitro characterization of solubilized nuclear receptors from rat liver and cultured GH1 cells. J Clin Invest. 1974;54(4):853–65. https://doi.org/10.1172/jci107825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Larsen PR. Thyroid-pituitary interaction: feedback regulation of thyrotropin secretion by thyroid hormones. N Engl J Med. 1982;306(1):23–32. https://doi.org/10.1056/NEJM198201073060107.

    Article  CAS  PubMed  Google Scholar 

  12. Salvatore D, Bartha T, Harney JW, Larsen PR. Molecular biological and biochemical characterization of the human type 2 selenodeiodinase. Endocrinology. 1996;137(8):3308–15. https://doi.org/10.1210/endo.137.8.8754756.

    Article  CAS  PubMed  Google Scholar 

  13. Pol CJ, Muller A, Zuidwijk MJ, van Deel ED, Kaptein E, Saba A, et al. Left-ventricular remodeling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology. 2011;152(2):669–79. https://doi.org/10.1210/en.2010-0431.

    Article  CAS  PubMed  Google Scholar 

  14. Brent GA. Mechanisms of thyroid hormone action. J Clin Invest. 2012;122(9):3035–43. https://doi.org/10.1172/JCI60047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roden DM, George AL Jr. The cardiac ion channels: relevance to management of arrhythmias. Annu Rev Med. 1996;47:135–48. https://doi.org/10.1146/annurev.med.47.1.135.

    Article  CAS  PubMed  Google Scholar 

  16. Razvi S, Jabbar A, Pingitore A, Danzi S, Biondi B, Klein I, et al. Thyroid hormones and cardiovascular function and diseases. J Am Coll Cardiol. 2018;71(16):1781–96. https://doi.org/10.1016/j.jacc.2018.02.045.

    Article  CAS  PubMed  Google Scholar 

  17. Kranias EG, Hajjar RJ. Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res. 2012;110(12):1646–60. https://doi.org/10.1161/CIRCRESAHA.111.259754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dillmann W. Cardiac hypertrophy and thyroid hormone signaling. Heart Fail Rev. 2010;15(2):125–32. https://doi.org/10.1007/s10741-008-9125-7.

    Article  CAS  PubMed  Google Scholar 

  19. Hoit BD, Khoury SF, Shao Y, Gabel M, Liggett SB, Walsh RA. Effects of thyroid hormone on cardiac beta-adrenergic responsiveness in conscious baboons. Circulation. 1997;96(2):592–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ojamaa K, Klein I, Sabet A, Steinberg SF. Changes in adenylyl cyclase isoforms as a mechanism for thyroid hormone modulation of cardiac beta-adrenergic receptor responsiveness. Metabolism. 2000;49(2):275–9.

    Article  CAS  PubMed  Google Scholar 

  21. Dillmann WH. Cellular action of thyroid hormone on the heart. Thyroid. 2002;12(6):447–52. https://doi.org/10.1089/105072502760143809.

    Article  CAS  PubMed  Google Scholar 

  22. Tang YD, Kuzman JA, Said S, Anderson BE, Wang X, Gerdes AM. Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation. 2005;112(20):3122–30. https://doi.org/10.1161/CIRCULATIONAHA.105.572883.

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Redetzke RA, Said S, Pottala JV, de Escobar GM, Gerdes AM. Serum thyroid hormone levels may not accurately reflect thyroid tissue levels and cardiac function in mild hypothyroidism. Am J Physiol Heart Circ Physiol. 2008;294(5):H2137–43. https://doi.org/10.1152/ajpheart.01379.2007.

    Article  CAS  PubMed  Google Scholar 

  24. Adamopoulos S, Gkouziouta A, Lazaros G, Karavolias G, Xatzianastasiou S, Aznaouridis K, et al. Endomyocardial biopsy in new onset dilated cardiomyopathy: prevalence and prognostic role of infectious agents. Int J Cardiol. 2013;168(4):e129–30. https://doi.org/10.1016/j.ijcard.2013.08.035.

    Article  PubMed  Google Scholar 

  25. Klein I, Danzi S. Thyroid disease and the heart. Circulation. 2007;116(15):1725–35. https://doi.org/10.1161/CIRCULATIONAHA.106.678326.

    Article  PubMed  Google Scholar 

  26. Karthik S, Pal GK, Nanda N, Hamide A, Bobby Z, Amudharaj D, et al. Sympathovagal imbalance in thyroid dysfunctions in females: correlation with thyroid profile, heart rate and blood pressure. Indian J Physiol Pharmacol. 2009;53(3):243–52.

    CAS  PubMed  Google Scholar 

  27. Nabbout LA, Robbins RJ. The cardiovascular effects of hyperthyroidism. Methodist Debakey Cardiovasc J. 2010;6(2):3–8.

    Article  PubMed  Google Scholar 

  28. Martinez F. Thyroid hormones and heart failure. Heart Fail Rev. 2016;21(4):361–4. https://doi.org/10.1007/s10741-016-9556-5.

    Article  CAS  PubMed  Google Scholar 

  29. Danzi S, Klein I. Thyroid hormone and the cardiovascular system. Minerva Endocrinol. 2004;29(3):139–50.

    CAS  PubMed  Google Scholar 

  30. Vargas-Uricoechea H, Bonelo-Perdomo A, Sierra-Torres CH. Effects of thyroid hormones on the heart. Clin Investig Arterioscler. 2014;26(6):296–309. https://doi.org/10.1016/j.arteri.2014.07.003.

    Article  PubMed  Google Scholar 

  31. Christ-Crain M, Morgenthaler NG, Meier C, Muller C, Nussbaumer C, Bergmann A et al. Pro-A-type and N-terminal pro-B-type natriuretic peptides in different thyroid function states. Swiss Med Wkly. 2005;135(37–38):549–54. https://doi.org/2005/37/smw-11119.

  32. Osuna PM, Udovcic M, Sharma MD. Hyperthyroidism and the heart. Methodist Debakey Cardiovasc J. 2017;13(2):60–3. https://doi.org/10.14797/mdcj-13-2-60.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Goldman S, McCarren M, Morkin E, Ladenson PW, Edson R, Warren S, et al. DITPA (3,5-Diiodothyropropionic Acid), a thyroid hormone analog to treat heart failure: phase II trial veterans affairs cooperative study. Circulation. 2009;119(24):3093–100. https://doi.org/10.1161/CIRCULATIONAHA.108.834424.

    Article  CAS  PubMed  Google Scholar 

  34. Yao J, Eghbali M. Decreased collagen gene expression and absence of fibrosis in thyroid hormone-induced myocardial hypertrophy. Response of cardiac fibroblasts to thyroid hormone in vitro. Circ Res. 1992;71(4):831–9.

    Article  CAS  PubMed  Google Scholar 

  35. Chen WJ, Lin KH, Lee YS. Molecular characterization of myocardial fibrosis during hypothyroidism: evidence for negative regulation of the pro-alpha1(I) collagen gene expression by thyroid hormone receptor. Mol Cell Endocrinol. 2000;162(1–2):45–55.

    Article  CAS  PubMed  Google Scholar 

  36. Ghose Roy S, Mishra S, Ghosh G, Bandyopadhyay A. Thyroid hormone induces myocardial matrix degradation by activating matrix metalloproteinase-1. Matrix Biol. 2007;26(4):269–79. https://doi.org/10.1016/j.matbio.2006.12.005.

    Article  CAS  PubMed  Google Scholar 

  37. Wang W, Guan H, Fang W, Zhang K, Gerdes AM, Iervasi G, et al. Free triiodothyronine level correlates with myocardial injury and prognosis in idiopathic dilated cardiomyopathy: evidence from cardiac MRI and SPECT/PET imaging. Sci Rep. 2016;6:39811. https://doi.org/10.1038/srep39811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gencer B, Collet TH, Virgini V, Bauer DC, Gussekloo J, Cappola AR, et al. Subclinical thyroid dysfunction and the risk of heart failure events: an individual participant data analysis from 6 prospective cohorts. Circulation. 2012;126(9):1040–9. https://doi.org/10.1161/CIRCULATIONAHA.112.096024.

    Article  CAS  PubMed  Google Scholar 

  39. Iervasi G, Molinaro S, Landi P, Taddei MC, Galli E, Mariani F, et al. Association between increased mortality and mild thyroid dysfunction in cardiac patients. Arch Intern Med. 2007;167(14):1526–32. https://doi.org/10.1001/archinte.167.14.1526.

    Article  PubMed  Google Scholar 

  40. Gullu S, Altuntas F, Dincer I, Erol C, Kamel N. Effects of TSH-suppressive therapy on cardiac morphology and function: beneficial effects of the addition of beta-blockade on diastolic dysfunction. Eur J Endocrinol. 2004;150(5):655–61.

    Article  CAS  PubMed  Google Scholar 

  41. Klein I, Danzi S. Thyroid disease and the heart. Curr Probl Cardiol. 2016;41(2):65–92. https://doi.org/10.1016/j.cpcardiol.2015.04.002.

    Article  PubMed  Google Scholar 

  42. Napoli R, Biondi B, Guardasole V, Matarazzo M, Pardo F, Angelini V, et al. Impact of hyperthyroidism and its correction on vascular reactivity in humans. Circulation. 2001;104(25):3076–80.

    Article  CAS  PubMed  Google Scholar 

  43. Kuzman JA, Gerdes AM, Kobayashi S, Liang Q. Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol. 2005;39(5):841–4. https://doi.org/10.1016/j.yjmcc.2005.07.019.

    Article  CAS  PubMed  Google Scholar 

  44. Biondi B, Palmieri EA, Lombardi G, Fazio S. Effects of thyroid hormone on cardiac function: the relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab. 2002;87(3):968–74. https://doi.org/10.1210/jcem.87.3.8302.

    Article  CAS  PubMed  Google Scholar 

  45. Kiss E, Jakab G, Kranias EG, Edes I. Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Circ Res. 1994;75(2):245–51.

    Article  CAS  PubMed  Google Scholar 

  46. Ladenson PW, Sherman SI, Baughman KL, Ray PE, Feldman AM. Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci U S A. 1992;89(12):5251–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bluhm WF, Meyer M, Sayen MR, Swanson EA, Dillmann WH. Overexpression of sarcoplasmic reticulum Ca(2+)-ATPase improves cardiac contractile function in hypothyroid mice. Cardiovasc Res. 1999;43(2):382–8.

    Article  CAS  PubMed  Google Scholar 

  48. Arai M, Otsu K, MacLennan DH, Alpert NR, Periasamy M. Effect of thyroid hormone on the expression of mRNA encoding sarcoplasmic reticulum proteins. Circ Res. 1991;69(2):266–76.

    Article  CAS  PubMed  Google Scholar 

  49. Kahaly GJ. Cardiovascular and atherogenic aspects of subclinical hypothyroidism. Thyroid. 2000;10(8):665–79. https://doi.org/10.1089/10507250050137743.

    Article  CAS  PubMed  Google Scholar 

  50. Biondi B, Cooper DS. The clinical significance of subclinical thyroid dysfunction. Endocr Rev. 2008;29(1):76–131. https://doi.org/10.1210/er.2006-0043.

    Article  CAS  PubMed  Google Scholar 

  51. Surks MI, Hollowell JG. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J Clin Endocrinol Metab. 2007;92(12):4575–82. https://doi.org/10.1210/jc.2007-1499.

    Article  CAS  PubMed  Google Scholar 

  52. Gharib H, Tuttle RM, Baskin HJ, Fish LH, Singer PA, McDermott MT. Subclinical thyroid dysfunction: a joint statement on management from the American Association of Clinical Endocrinologists, the American Thyroid Association, and the Endocrine Society. J Clin Endocrinol Metab. 2005;90(1):581–5;. discussion 6–7. https://doi.org/10.1210/jc.2004-1231.

    Article  CAS  Google Scholar 

  53. Biondi B, Fazio S, Palmieri EA, Carella C, Panza N, Cittadini A, et al. Left ventricular diastolic dysfunction in patients with subclinical hypothyroidism. J Clin Endocrinol Metab. 1999;84(6):2064–7. https://doi.org/10.1210/jcem.84.6.5733.

    Article  CAS  PubMed  Google Scholar 

  54. Monzani F, Di Bello V, Caraccio N, Bertini A, Giorgi D, Giusti C, et al. Effect of levothyroxine on cardiac function and structure in subclinical hypothyroidism: a double blind, placebo-controlled study. J Clin Endocrinol Metab. 2001;86(3):1110–5. https://doi.org/10.1210/jcem.86.3.7291.

    Article  CAS  PubMed  Google Scholar 

  55. Ripoli A, Pingitore A, Favilli B, Bottoni A, Turchi S, Osman NF, et al. Does subclinical hypothyroidism affect cardiac pump performance? Evidence from a magnetic resonance imaging study. J Am Coll Cardiol. 2005;45(3):439–45. https://doi.org/10.1016/j.jacc.2004.10.044.

    Article  PubMed  Google Scholar 

  56. Forfar JC, Wathen CG, Todd WT, Bell GM, Hannan WJ, Muir AL, et al. Left ventricular performance in subclinical hypothyroidism. Q J Med. 1985;57(224):857–65.

    CAS  PubMed  Google Scholar 

  57. Brenta G, Mutti LA, Schnitman M, Fretes O, Perrone A, Matute ML. Assessment of left ventricular diastolic function by radionuclide ventriculography at rest and exercise in subclinical hypothyroidism, and its response to L-thyroxine therapy. Am J Cardiol. 2003;91(11):1327–30.

    Article  CAS  PubMed  Google Scholar 

  58. Arem R, Rokey R, Kiefe C, Escalante DA, Rodriguez A. Cardiac systolic and diastolic function at rest and exercise in subclinical hypothyroidism: effect of thyroid hormone therapy. Thyroid. 1996;6(5):397–402. https://doi.org/10.1089/thy.1996.6.397.

    Article  CAS  PubMed  Google Scholar 

  59. Owen PJ, Rajiv C, Vinereanu D, Mathew T, Fraser AG, Lazarus JH. Subclinical hypothyroidism, arterial stiffness, and myocardial reserve. J Clin Endocrinol Metab. 2006;91(6):2126–32. https://doi.org/10.1210/jc.2005-2108.

    Article  CAS  PubMed  Google Scholar 

  60. Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F, et al. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab. 2006;91(2):439–46. https://doi.org/10.1210/jc.2005-1303.

    Article  CAS  PubMed  Google Scholar 

  61. Dardano A, Caraccio N, Monzani F. Evaluation of endothelial function in subclinical thyroid dysfunction. Thyroid. 2006;16(2):200–1. https://doi.org/10.1089/thy.2006.16.200.

    Article  CAS  PubMed  Google Scholar 

  62. Nagasaki T, Inaba M, Kumeda Y, Hiura Y, Yamada S, Shirakawa K, et al. Central pulse wave velocity is responsible for increased brachial-ankle pulse wave velocity in subclinical hypothyroidism. Clin Endocrinol. 2007;66(2):304–8. https://doi.org/10.1111/j.1365-2265.2006.02730.x.

    Article  Google Scholar 

  63. Taddei S, Caraccio N, Virdis A, Dardano A, Versari D, Ghiadoni L, et al. Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: beneficial effect of levothyroxine therapy. J Clin Endocrinol Metab. 2003;88(8):3731–7. https://doi.org/10.1210/jc.2003-030039.

    Article  CAS  PubMed  Google Scholar 

  64. Monzani F, Caraccio N, Kozakowa M, Dardano A, Vittone F, Virdis A, et al. Effect of levothyroxine replacement on lipid profile and intima-media thickness in subclinical hypothyroidism: a double-blind, placebo- controlled study. J Clin Endocrinol Metab. 2004;89(5):2099–106. https://doi.org/10.1210/jc.2003-031669.

    Article  CAS  PubMed  Google Scholar 

  65. Li L, Guo CY, Yang J, Jia EZ, Zhu TB, Wang LS, et al. Negative association between free triiodothyronine level and international normalized ratio in euthyroid subjects with acute myocardial infarction. Acta Pharmacol Sin. 2011;32(11):1351–6. https://doi.org/10.1038/aps.2011.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ozcan KS, Osmonov D, Toprak E, Gungor B, Tatlisu A, Ekmekci A, et al. Sick euthyroid syndrome is associated with poor prognosis in patients with ST segment elevation myocardial infarction undergoing primary percutaneous intervention. Cardiol J. 2014;21(3):238–44. https://doi.org/10.5603/CJ.a2013.0108.

    Article  PubMed  Google Scholar 

  67. Ertugrul O, Ahmet U, Asim E, Gulcin HE, Burak A, Murat A, et al. Prevalence of subclinical hypothyroidism among patients with acute myocardial infarction. ISRN Endocrinol. 2011;2011:810251. https://doi.org/10.5402/2011/810251.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Iervasi G, Pingitore A, Landi P, Raciti M, Ripoli A, Scarlattini M, et al. Low-T3 syndrome: a strong prognostic predictor of death in patients with heart disease. Circulation. 2003;107(5):708–13.

    Article  PubMed  Google Scholar 

  69. Frey A, Kroiss M, Berliner D, Seifert M, Allolio B, Guder G, et al. Prognostic impact of subclinical thyroid dysfunction in heart failure. Int J Cardiol. 2013;168(1):300–5. https://doi.org/10.1016/j.ijcard.2012.09.064.

    Article  PubMed  Google Scholar 

  70. Olivares EL, Marassi MP, Fortunato RS, da Silva AC, Costa-e-Sousa RH, Araujo IG, et al. Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology. 2007;148(10):4786–92. https://doi.org/10.1210/en.2007-0043.

    Article  CAS  PubMed  Google Scholar 

  71. Van den Berghe G. Non-thyroidal illness in the ICU: a syndrome with different faces. Thyroid. 2014;24(10):1456–65. https://doi.org/10.1089/thy.2014.0201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. De Groot LJ. Dangerous dogmas in medicine: the nonthyroidal illness syndrome. J Clin Endocrinol Metab. 1999;84(1):151–64. https://doi.org/10.1210/jcem.84.1.5364.

    Article  PubMed  Google Scholar 

  73. Kimur T, Kotajima N, Kanda T, Kuwabara A, Fukumura Y, Kobayashi I. Correlation of circulating interleukin-10 with thyroid hormone in acute myocardial infarction. Res Commun Mol Pathol Pharmacol. 2001;110(1–2):53–8.

    CAS  PubMed  Google Scholar 

  74. Zhang B, Peng W, Wang C, Li W, Xu Y. A low fT3 level as a prognostic marker in patients with acute myocardial infarctions. Intern Med. 2012;51(21):3009–15.

    Article  CAS  PubMed  Google Scholar 

  75. Friberg L, Drvota V, Bjelak AH, Eggertsen G, Ahnve S. Association between increased levels of reverse triiodothyronine and mortality after acute myocardial infarction. Am J Med. 2001;111(9):699–703.

    Article  CAS  PubMed  Google Scholar 

  76. Ceremuzynski L, Gorecki A, Czerwosz L, Chamiec T, Bartoszewicz Z, Herbaczynska-Cedro K. Low serum triiodothyronine in acute myocardial infarction indicates major heart injury. Kardiol Pol. 2004;60(5):468–80. discussion 73–4

    Google Scholar 

  77. Kim DH, Choi DH, Kim HW, Choi SW, Kim BB, Chung JW, et al. Prediction of infarct severity from triiodothyronine levels in patients with ST-elevation myocardial infarction. Korean J Intern Med. 2014;29(4):454–65. https://doi.org/10.3904/kjim.2014.29.4.454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lymvaios I, Mourouzis I, Cokkinos DV, Dimopoulos MA, Toumanidis ST, Pantos C. Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction: a strong association? Eur J Endocrinol. 2011;165(1):107–14. https://doi.org/10.1530/eje-11-0062.

    Article  CAS  PubMed  Google Scholar 

  79. Rajagopalan V, Zhang Y, Ojamaa K, Chen YF, Pingitore A, Pol CJ, et al. Safe oral triiodo-L-thyronine therapy protects from post-infarct cardiac dysfunction and arrhythmias without cardiovascular adverse effects. PLoS One. 2016;11(3):e0151413. https://doi.org/10.1371/journal.pone.0151413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rajagopalan V, Zhang Y, Pol C, Costello C, Seitter S, Lehto A, et al. Modified low-dose triiodo-L-thyronine therapy safely improves function following myocardial ischemia-reperfusion injury. Front Physiol. 2017;8:225. https://doi.org/10.3389/fphys.2017.00225.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Da Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, YD. (2020). Diastolic and Systolic Dysfunction of the Heart and Thyroid Hormone Abnormalities. In: Iervasi, G., Pingitore, A., Gerdes, A., Razvi, S. (eds) Thyroid and Heart . Springer, Cham. https://doi.org/10.1007/978-3-030-36871-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36871-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36870-8

  • Online ISBN: 978-3-030-36871-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics