Skip to main content

Thyroid Dysfunction and Cardiovascular Disease in Chronic Kidney Disease

  • Chapter
  • First Online:
  • 430 Accesses

Abstract

Chronic renal insufficiency alters thyroid hormone synthesis, distribution, and elimination and disturbs central (hypothalamo-pituitary) control of thyroid function. About one out five patients with a GFR < 60 mL/min/1.73 m2 shows subclinical or clinical hypothyroidism. Inflammation is a relevant player in the low T3 levels, which is the most frequent alteration in thyroid function in chronic kidney disease (CKD). There is still no definitive experimental proof that thyroid dysfunction is causally implicated in the high risk for death and cardiovascular events in this condition. Observational studies point to thyroid dysfunction as a relevant player in cardiomyopathy and the high risk of death and cardiovascular events of CKD patients. Mechanistic studies and exploratory intervention trials testing upstream pathways regulating thyroid hormone in CKD patients are needed to assess the nature of the association between thyroid dysfunction and clinical outcomes unraveled by observational studies in this very high risk population.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bianco AC, da Conceição RR. The deiodinase trio and thyroid hormone signaling. Methods Mol Biol. 2018;1801:67–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zoccali C, Tripepi G, Cutrupi S, Pizzini P, Mallamaci F. Low triiodothyronine: a new facet of inflammation in end-stage renal disease. J Am Soc Nephrol. 2005;16:2789–95.

    Article  PubMed  CAS  Google Scholar 

  3. Enia G, Panuccio V, Cutrupi S, Pizzini P, Tripepi G, Mallamaci F, Zoccali C. Subclinical hypothyroidism is linked to micro-inflammation and predicts death in continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant. 2007;22:538–44.

    Article  PubMed  Google Scholar 

  4. Zoccali C, Mallamaci F. Thyroid function and clinical outcomes in kidney failure. Clin J Am Soc Nephrol. 2012;7:12–4.

    Article  PubMed  CAS  Google Scholar 

  5. Kaptein EM, Quion-Verde H, Chooljian CJ, Tang WW, Friedman PE, Rodriquez HJ, Massry SG. The thyroid in end-stage renal disease. Medicine (Baltimore). 1988;67:187–97.

    Article  CAS  Google Scholar 

  6. Disthabanchong S, Treeruttanawanich A. Oral sodium bicarbonate improves thyroid function in predialysis chronic kidney disease. Am J Nephrol. 2010;32:549–56.

    Article  PubMed  CAS  Google Scholar 

  7. Wiederkehr MR, Kalogiros J, Krapf R. Correction of metabolic acidosis improves thyroid and growth hormone axes in haemodialysis patients. Nephrol Dial Transplant. 2004;19:1190–7.

    Article  PubMed  Google Scholar 

  8. Spaulding SW, Gregerman RI. Free thyroxine in serum by equilibrium dialysis: effects of dilution, specific ions and inhibitors of binding. J Clin Endocrinol Metab. 1972;34:974–82.

    Article  PubMed  CAS  Google Scholar 

  9. Santos GM, Pantoja CJ, Costa E, Silva A, Rodrigues MC, Ribeiro RC, Simeoni LA, Lomri N, Neves FA. Thyroid hormone receptor binding to DNA and T3-dependent transcriptional activation are inhibited by uremic toxins. Nucl Recept. 2005;3:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lim VS, Flanigan MJ, Zavala DC, Freeman RM. Protective adaptation of low serum triiodothyronine in patients with chronic renal failure. Kidney Int. 1985;28:541–9.

    Article  PubMed  CAS  Google Scholar 

  11. Czernichow P, Dauzet MC, Broyer M, Rappaport R. Abnormal TSH, PRL and GH response to TSH releasing factor in chronic renal failure. J Clin Endocrinol Metab. 1976;43:630–7.

    Article  PubMed  CAS  Google Scholar 

  12. Duntas L, Wolf CF, Keck FS, Rosenthal J. Thyrotropin-releasing hormone: pharmacokinetic and pharmacodynamic properties in chronic renal failure. Clin Nephrol. 1992;38:214–8.

    PubMed  CAS  Google Scholar 

  13. Wheatley T, Clark PM, Clark JD, Holder R, Raggatt PR, Evans DB. Abnormalities of thyrotrophin (TSH) evening rise and pulsatile release in haemodialysis patients: evidence for hypothalamic-pituitary changes in chronic renal failure. Clin Endocrinol (Oxf). 1989;31:39–50.

    Article  CAS  Google Scholar 

  14. Spector DA, Davis PJ, Helderman JH, Bell B, Utiger RD. Thyroid function and metabolic state in chronic renal failure. Ann Intern Med. 1976;85:724–30.

    Article  PubMed  CAS  Google Scholar 

  15. Song SH, Kwak IS, Lee DW, Kang YH, Seong EY, Park JS. The prevalence of low triiodothyronine according to the stage of chronic kidney disease in subjects with a normal thyroid-stimulating hormone. Nephrol Dial Transplant. 2009;24:1534–8.

    Article  PubMed  CAS  Google Scholar 

  16. Rhee CM, Brent GA, Kovesdy CP, Soldin OP, Nguyen D, Budoff MJ, Brunelli SM, Kalantar-Zadeh K. Thyroid functional disease: an under-recognized cardiovascular risk factor in kidney disease patients. Nephrol Dial Transplant. 2015;30:724–37.

    Article  PubMed  CAS  Google Scholar 

  17. Schultheiss UT, Daya N, Grams ME, Seufert J, Steffes M, Coresh J, Selvin E, Köttgen A. Thyroid function, reduced kidney function and incident chronic kidney disease in a community-based population: the atherosclerosis risk in communities study. Nephrol Dial Transplant. 2017;32:1874–81.

    PubMed  CAS  Google Scholar 

  18. Chaker L, Sedaghat S, Hoorn EJ, Elzen WP, Gussekloo J, Hofman A, Ikram MA, Franco OH, Dehghan A, Peeters RP. The association of thyroid function and the risk of kidney function decline: a population-based cohort study. Eur J Endocrinol. 2016;175:653–60.

    Article  PubMed  CAS  Google Scholar 

  19. Meuwese CL, van Diepen M, Cappola AR, et al. Low thyroid function is not associated with an accelerated deterioration in renal function. Nephrol Dial Transplant. 2018;34:650. https://doi.org/10.1093/ndt/gfy071.

    Article  PubMed Central  CAS  Google Scholar 

  20. Lo JC, Chertow GM, Go AS, Hsu C-Y. Increased prevalence of subclinical and clinical hypothyroidism in persons with chronic kidney disease. Kidney Int. 2005;67:1047–52.

    Article  PubMed  Google Scholar 

  21. Chonchol M, Lippi G, Salvagno G, Zoppini G, Muggeo M, Targher G. Prevalence of subclinical hypothyroidism in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2008;3:1296–300.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fan J, Yan P, Wang Y, Shen B, Ding F, Liu Y. Prevalence and clinical significance of low T3 syndrome in non-Dialysis patients with chronic kidney disease. Med Sci Monit. 2016;22:1171–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chandra A. Prevalence of hypothyroidism in patients with chronic kidney disease: a cross-sectional study from North India. Kidney Res Clin Pract. 2016;35:165–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rhee CM, Alexander EK, Bhan I, Brunelli SM. Hypothyroidism and mortality among Dialysis patients. Clin J Am Soc Nephrol. 2013;8:593–601.

    Article  PubMed  CAS  Google Scholar 

  25. Jaroszyński AJ, Głowniak A, Chrapko B, Sodolski T, Małecka T, Widomska-Czekajska T, Książek A. Low-T3 syndrome and signal-averaged ECG in hemodialyzed patients. Physiol Res. 2005;54:521–6.

    PubMed  Google Scholar 

  26. del Carmen Prado-Uribe M, Ventura M-J, Ávila-Díaz M, et al. La disminución de triyodotironina se asocia con la elevación del péptido natriurético cerebral N-terminal y con la mortalidad en pacientes en diálisis. Nefrología. 2017;37:598–607.

    Article  Google Scholar 

  27. Straub RH, Cutolo M, Buttgereit F, Pongratz G. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med. 2010;267:543–60.

    Article  PubMed  CAS  Google Scholar 

  28. Härle P, Möbius D, Carr DJJ, Schölmerich J, Straub RH. An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. Arthritis Rheum. 2005;52:1305–13.

    Article  PubMed  CAS  Google Scholar 

  29. Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest. 2008;118:2992–3002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271:665–8.

    Article  PubMed  CAS  Google Scholar 

  31. Senn JJ, Klover PJ, Nowak IA, Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes. 2002;51:3391–9.

    Article  PubMed  CAS  Google Scholar 

  32. Yadav A, Kataria MA, Saini V, Yadav A. Role of leptin and adiponectin in insulin resistance. Clin Chim Acta. 2013;417:80–4.

    Article  PubMed  CAS  Google Scholar 

  33. Muse ED, Obici S, Bhanot S, Monia BP, McKay RA, Rajala MW, Scherer PE, Rossetti L. Role of resistin in diet-induced hepatic insulin resistance. J Clin Invest. 2004;114:232–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Straub RH, Besedovsky HO. Integrated evolutionary, immunological, and neuroendocrine framework for the pathogenesis of chronic disabling inflammatory diseases. FASEB J. 2003;17:2176–83.

    Article  PubMed  CAS  Google Scholar 

  35. Gupta J, Mitra N, Kanetsky PA, et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin J Am Soc Nephrol. 2012;7:1938–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mehrotra R, Westenfeld R, Christenson P, Budoff M, Ipp E, Takasu J, Gupta A, Norris K, Ketteler M, Adler S. Serum fetuin-A in nondialyzed patients with diabetic nephropathy: relationship with coronary artery calcification. Kidney Int. 2005;67:1070–7.

    Article  PubMed  CAS  Google Scholar 

  37. Meuwese CL, Dekkers OM, Stenvinkel P, Dekker FW, Carrero JJ. Nonthyroidal illness and the cardiorenal syndrome. Nat Rev Nephrol. 2013;9:599–609.

    Article  PubMed  CAS  Google Scholar 

  38. De Groot LJ. Dangerous Dogmas in medicine: the nonthyroidal illness syndrome. J Clin Endocrinol Metab. 1999;84:151–64.

    Article  PubMed  Google Scholar 

  39. Abozenah H, Shoeb S, Sabry A, Ismail H. Relation between thyroid hormone concentration and serum levels of interleukin-6 and interleukin-10 in patients with nonthyroidal illness including chronic kidney disease. Iran J Kidney Dis. 2008;2:16–23.

    PubMed  Google Scholar 

  40. Stouthard JM, van der Poll T, Endert E, Bakker PJ, Veenhof CH, Sauerwein HP, Romijn JA. Effects of acute and chronic interleukin-6 administration on thyroid hormone metabolism in humans. J Clin Endocrinol Metab. 1994;79:1342–6.

    PubMed  CAS  Google Scholar 

  41. van der Poll T, Romijn JA, Wiersinga WM, Sauerwein HP. Tumor necrosis factor: a putative mediator of the sick euthyroid syndrome in man. J Clin Endocrinol Metab. 1990;71:1567–72.

    Article  PubMed  Google Scholar 

  42. Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeöld A, Bianco AC. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev. 2008;29:898–938.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Alrefaie Z, Awad H. Effect of vitamin D3 on thyroid function and de-iodinase 2 expression in diabetic rats. Arch Physiol Biochem. 2015;121:206–9.

    Article  PubMed  CAS  Google Scholar 

  44. Xu G, Tu W, Qin S. The relationship between deiodinase activity and inflammatory responses under the stimulation of uremic toxins. J Transl Med. 2014;12:239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jabbar A, Pingitore A, Pearce SH, Zaman A, Iervasi G, Razvi S. Thyroid hormones and cardiovascular disease. Nat Rev Cardiol. 2017;14:39–55.

    Article  PubMed  CAS  Google Scholar 

  46. Samuels HH, Tsai JS, Casanova J, Stanley F. Thyroid hormone action: in vitro characterization of solubilized nuclear receptors from rat liver and cultured GH1 cells. J Clin Invest. 1974;54:853–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nakai A, Seino S, Sakurai A, Szilak I, Bell GI, DeGroot LJ. Characterization of a thyroid hormone receptor expressed in human kidney and other tissues. Proc Natl Acad Sci U S A. 1988;85:2781–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Cheng S-Y, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010;31:139–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kiss E, Jakab G, Kranias EG, Edes I. Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Circ Res. 1994;75:245–51.

    Article  PubMed  CAS  Google Scholar 

  50. Hoit BD, Khoury SF, Shao Y, Gabel M, Liggett SB, Walsh RA. Effects of thyroid hormone on cardiac beta-adrenergic responsiveness in conscious baboons. Circulation. 1997;96:592–8.

    Article  PubMed  CAS  Google Scholar 

  51. Zoccali C, Mallamaci F, Tripepi G, Cutrupi S, Pizzini P. Low triiodothyronine and survival in end-stage renal disease. Kidney Int. 2006;70:523–8.

    Article  PubMed  CAS  Google Scholar 

  52. Tatar E, Kircelli F, Asci G, et al. Associations of triiodothyronine levels with carotid atherosclerosis and arterial stiffness in hemodialysis patients. Clin J Am Soc Nephrol. 2011;6:2240–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Carrero JJ, Qureshi AR, Axelsson J, et al. Clinical and biochemical implications of low thyroid hormone levels (total and free forms) in euthyroid patients with chronic kidney disease. J Intern Med. 2007;262:690–701.

    Article  PubMed  CAS  Google Scholar 

  54. Yilmaz MI, Sonmez A, Karaman M, et al. Low triiodothyronine alters flow-mediated vasodilatation in advanced nondiabetic kidney disease. Am J Nephrol. 2011;33:25–32.

    Article  PubMed  CAS  Google Scholar 

  55. Afsar B, Yilmaz MI, Siriopol D, et al. Thyroid function and cardiovascular events in chronic kidney disease patients. J Nephrol. 2017;30:235–42.

    Article  PubMed  CAS  Google Scholar 

  56. Yang JW, Han ST, Song SH, Kim MK, Kim JS, Choi SO, Han B-G. Serum T3 level can predict cardiovascular events and all-cause mortality rates in CKD patients with proteinuria. Ren Fail. 2012;34:364–72.

    Article  PubMed  CAS  Google Scholar 

  57. Amann K, Breitbach M, Ritz E, Mall G. Myocyte/capillary mismatch in the heart of uremic patients. J Am Soc Nephrol. 1998;9:1018–22.

    PubMed  CAS  Google Scholar 

  58. Segall L, Nistor I, Covic A. Heart failure in patients with chronic kidney disease: a systematic integrative review. Biomed Res Int. 2014;2014:937398. https://doi.org/10.1155/2014/937398.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zoccali C, Bolignano D, Mallamaci F. Left ventricular hypertrophy in chronic kidney disease. In: Turner NN, Lameire N, Goldsmith DJ, Winearls CG, Himmelfarb J, Remuzzi G, Bennet WG, de Broe ME, Chapman JR, Adrian Covic VJ, editors. Oxford textbook of clinical nephrology. 4th ed. Oxford: Oxford University Press; 2015. p. 837–52.

    Chapter  Google Scholar 

  60. Ioannou K, Stel VS, Dounousi E, Jager KJ, Papagianni A, Pappas K, Siamopoulos KC, Zoccali C, Tsakiris D. Inflammation, endothelial dysfunction and increased left ventricular mass in chronic kidney disease (CKD) patients: a longitudinal study. PLoS One. 2015;10:e0138461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Wang AYM, Wang M, Woo J, Lam CWK, Lui SF, Li PKT, Sanderson JE. Inflammation, residual kidney function, and cardiac hypertrophy are interrelated and combine adversely to enhance mortality and cardiovascular death risk of peritoneal dialysis patients. J Am Soc Nephrol. 2004;15:2186–94.

    Article  PubMed  CAS  Google Scholar 

  62. Erten Y, Tulmac M, Derici U, Pasaoglu H, Reis KA, Bali M, Arinsoy T, Cengel A, Sindel S. An association between inflammatory state and left ventricular hypertrophy in hemodialysis patients. Ren Fail. 2005;27:581–9.

    Article  PubMed  Google Scholar 

  63. Zoccali C, Benedetto FA, Mallamaci F, et al. Fibrinogen, inflammation and concentric left ventricular hypertrophy in chronic renal failure. Eur J Clin Invest. 2003;33:561–6.

    Article  PubMed  CAS  Google Scholar 

  64. Xu G, Yan Y, Liu Y. The cardiovascular disease risks of nonthyroidal illness syndrome and inflammatory responses on patients with chronic kidney disease: from the association to clinical prognosis. Cardiovasc Ther. 2014;32:257–63.

    Article  PubMed  CAS  Google Scholar 

  65. Zoccali C, Benedetto F, Mallamaci F, Tripepi G, Cutrupi S, Pizzini P, Malatino LS, Bonanno G, Seminara G. Low triiodothyronine and cardiomyopathy in patients with end-stage renal disease. J Hypertens. 2006;24:2039–46.

    Article  PubMed  CAS  Google Scholar 

  66. Parving H-H, Hansen JM, Nielsen SL, Rossing N, Munck O, Lassen NA. Mechanisms of edema formation in myxedema—increased protein extravasation and relatively slow lymphatic drainage. N Engl J Med. 1979;301:460–5.

    Article  PubMed  CAS  Google Scholar 

  67. Monzani F, Di Bello V, Caraccio N, Bertini A, Giorgi D, Giusti C, Ferrannini E. Effect of levothyroxine on cardiac function and structure in subclinical hypothyroidism: a double blind, placebo-controlled study. J Clin Endocrinol Metab. 2001;86:1110–5.

    Article  PubMed  CAS  Google Scholar 

  68. Harnett JD, Foley RN, Kent GM, Barre PE, Murray D, Parfrey PS. Congestive heart failure in dialysis patients: prevalence, incidence, prognosis and risk factors. Kidney Int. 1995;47:884–90. https://doi.org/10.1038/ki.1995.132.

    Article  PubMed  CAS  Google Scholar 

  69. Koo HM, Kim CH, Doh FM, et al. The impact of low triiodothyronine levels on mortality is mediated by malnutrition and cardiac dysfunction in incident hemodialysis patients. Eur J Endocrinol. 2013;169:409–19.

    Article  PubMed  CAS  Google Scholar 

  70. Kang EW, Nam JY, Yoo T-H, Shin SK, Kang S-W, Han D-S, Han SH. Clinical implications of subclinical hypothyroidism in continuous ambulatory peritoneal dialysis patients. Am J Nephrol. 2008;28:908–13.

    Article  PubMed  CAS  Google Scholar 

  71. You AS, Sim JJ, Kovesdy CP, Streja E, Nguyen DV, Brent GA, Kalantar-Zadeh K, Rhee CM. Association of thyroid status prior to transition to end-stage renal disease with early dialysis mortality. Nephrol Dial Transplant. 2018;34:2095–104. https://doi.org/10.1093/ndt/gfy289.

    Article  PubMed Central  Google Scholar 

  72. Rhee CM, Kalantar-Zadeh K, Ravel V, Streja E, You AS, Brunelli SM, Nguyen DV, Brent GA, Kovesdy CP. Thyroid status and death risk in US veterans with chronic kidney disease. Mayo Clin Proc. 2018;93:573–85.

    Article  PubMed  CAS  Google Scholar 

  73. Rhee CM, You AS, Nguyen DV, Brunelli SM, Budoff MJ, Streja E, Nakata T, Kovesdy CP, Brent GA, Kalantar-Zadeh K. Thyroid status and mortality in a prospective hemodialysis cohort. J Clin Endocrinol Metab. 2017;102:1568–77.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Howard BV, Rossouw JE. Estrogens and cardiovascular disease risk revisited: the women’s health initiative. Curr Opin Lipidol. 2013;24:493–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.

    Article  PubMed  CAS  Google Scholar 

  76. Ridker PM, MacFadyen JG, Glynn RJ, Koenig W, Libby P, Everett BM, Lefkowitz M, Thuren T, Cornel JH. Inhibition of interleukin-1β by Canakinumab and cardiovascular outcomes in patients with chronic kidney disease. J Am Coll Cardiol. 2018;71:2405–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zoccali, C., Mallamaci, F. (2020). Thyroid Dysfunction and Cardiovascular Disease in Chronic Kidney Disease. In: Iervasi, G., Pingitore, A., Gerdes, A., Razvi, S. (eds) Thyroid and Heart . Springer, Cham. https://doi.org/10.1007/978-3-030-36871-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36871-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36870-8

  • Online ISBN: 978-3-030-36871-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics