Skip to main content

Conclusion: Feyerabend and Challenges of the Twenty-First Century

  • Chapter
  • First Online:
Feyerabend’s Epistemological Anarchism

Part of the book series: Contemporary Trends and Issues in Science Education ((CTISE,volume 50))

  • 370 Accesses

Abstract

In both philosophy of science and science education, Feyerabend is generally considered to be against rationalism, anti-science and for having espoused anything goes. Based on material presented in the previous chapters, here I will attempt to show that this image is erroneous and that on the contrary Feyerabend was presenting a picture of science that represented “how science really works.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El-Khalick, F., Belarmino, J. J., Brunner, J. L., Le, A.-P., Myers, J. Y., Summers, R. G., et al. (2017). A longitudinal analysis of the extent and manner of representations of nature of science in U.S. high school chemistry, biology, and physics textbooks. In C. V. McDonald & F. Abd-El-Khalick (Eds.), Representations of nature of science in school science textbooks: A global perspective (pp. 20–60). New York: Routledge.

    Chapter  Google Scholar 

  • Abd-El-Khalick, F., Myers, J. Y., Summers, R., Brunner, J., Waight, N., Wahbeh, N., et al. (2017). A longitudinal analysis of the extent and manner of representations of nature of science in U.S. high school biology and physics textbooks. Journal of Research in Science Teaching, 54(1), 82–120.

    Google Scholar 

  • Agassi, J. (1975). Genius in science. Philosophy of the Social Sciences, 5(2), 145–161.

    Article  Google Scholar 

  • Agassi, J. (2014). Popper and his popular critics: Thomas Kuhn, Paul Feyerabend and Imre Lakatos. Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Bailin, S. (1990). Creativity, discovery, and science education: Kuhn and Feyerabend revisited. Interchange, 21(3), 34–44.

    Article  Google Scholar 

  • Ben-Ari, M. (2005). Situated learning in “this high-technology world”. Science & Education, 14(3–5), 367–376.

    Google Scholar 

  • Brown, M. J., & Kidd, I. J. (2016). Introduction: Reappraising Paul Feyerabend. Studies in History and Philosophy of Science, 57, 1–8.

    Google Scholar 

  • Bunge, M. (2003). Twenty-five centuries of quantum physics: From Pythagoras to us, and from subjectivism to realism. Science & Education, 12(5–6), 445–466.

    Google Scholar 

  • Cartwright, N. (1999). The dappled world: A study of the boundaries of science. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Collins, H. M. (2000). On beyond 2000. Studies in Science Education, 35, 169–173.

    Google Scholar 

  • Collins, H. M., & Evans, R. (2007). Rethinking expertise. Chicago: University of Chicago Press.

    Google Scholar 

  • Cordero, A. (2001). Scientific culture and public education. Science & Education, 10(1-2), 71–83.

    Google Scholar 

  • Cushing, J. T. (1998). Philosophical concepts in physics: The historical relation between philosophy and scientific theories. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Daston, L., & Galison, P. L. (2007). Objectivity. New York: Zone Books.

    Google Scholar 

  • Davisson, C., & Germer, L. H. (1927). Diffraction of electrons by a crystal of Nickel. Physical Review, 30(6), 705–740.

    Google Scholar 

  • De Berg, K. C. (2014). Teaching chemistry for all its worth: The interaction between facts, ideas, and language in Lavoisier’s and Priestley’s chemistry practice: The case of the study of the composition of air. Science & Education, 23(10), 2045–2068.

    Google Scholar 

  • Drago, A. (1994). Mach’s thesis: Thermodynamics as the basic theory for physics teaching. Science & Education, 3(2), 189–198.

    Google Scholar 

  • Eflin, J. T., Glennan, S., & Reisch, G. (1999). The nature of science: A perspective from the philosophy of science. Journal of Research in Science Teaching, 36(1), 107–116.

    Article  Google Scholar 

  • Einstein, A. (1905). Über einen erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Annalen de Physik, 17, 132–148.

    Google Scholar 

  • Feyerabend, P. K. (1962/1981). Explanation, reduction and empiricism. Minnesota Studies in the Philosophy of Science, 3, 28–97.

    Google Scholar 

  • Feyerabend, P. K. (1968). Science, freedom, and the good life. Philosophical Forum, 1(2), 127–135.

    Google Scholar 

  • Feyerabend, P. K. (1974/1975b/1988). How to defend society against science. In E. D. Klemke, R. Hollinger, & A. D. Kline (Eds.), Introductory readings in the philosophy of science. Buffalo, NY: Prometheus.

    Google Scholar 

  • Feyerabend, P. K. (1975a). Against method. Outline of an anarchist theory of knowledge. Londond: New Left Books.

    Google Scholar 

  • Feyerabend, P. K. (1993). Against method. Outline of an anarchistic theory of knowledge (3rd Rev and enlarged edn). New York: Verso.

    Google Scholar 

  • Feyerabend, P. K. (1995). Killing time (autobiography). Chicago: University of Chicago Press.

    Google Scholar 

  • Feyerabend, P. K. (1999a). Ambigüedad y armonía. Barcelona, Spain: Ediciones Paidós (Based on Lectures delivered at the University of Trent in 1992, published in Italian in 1996 and English in 2011).

    Google Scholar 

  • Feyerabend, P. K. (1999b). Conquest of abundance: A tale of abstraction versus the richness of being. Chicago: University Of Chicago Press.

    Google Scholar 

  • Feyerabend, P. K. (2011). The tyranny of science. Cambridge, UK: Polity Press (Based on Trent lectures delivered in 1992).

    Google Scholar 

  • Finocchiario, M. A. (2011). A Galilean approach to the Galileo affair. Science & Education, 20(1), 51–66.

    Google Scholar 

  • Finocchiario, M. A. (2019). On trial for reason: Science, religion, and culture in the Galileo affair. New York: Oxford University Press.

    Google Scholar 

  • Finocchiaro, M. A. (2010). Defending Copernicus and Galileo: Critical reasoning in the two affairs. Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Galison, P. (2015). Email to author, Nov. 17.

    Google Scholar 

  • Geelan, D. R. (1997). Epistemological anarchy and the many forms of constructivism. Science & Education, 6(1–2), 15–28.

    Google Scholar 

  • Giere, R. N. (2006a). Scientific perspectivism. Chicago: University of Chicago Press.

    Google Scholar 

  • Giere, R. N. (2006b). Perspectival pluralism. In S. H. Kellert, H. E. Longino, & C. K. Waters (Eds.), Scientific pluralism (pp. 26–41). Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Giere, R. N. (2016). Feyerabend’s perspectivism. Studies in History and Philosophy of Science, 57, 137–141.

    Google Scholar 

  • Gould, S. J. (1980). The promise of paleobiology as a nomothetic, evolutionary discipline. Paleobiology, 6(1), 96–118.

    Article  Google Scholar 

  • Hattiangadi, J. N. (1977). The crises in methodology: Feyerabend. Philosophy of the Social Sciences, 7, 289–302.

    Article  Google Scholar 

  • Heering, P., & Höttecke, D. (2014). Historical-investigative approaches in science teaching. In M. R. Matthews (Ed.), International Handbook of Research in History, Philosophy and Science Teaching (Vol. II, pp. 1473–1502). Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Heilbron, J. L. (1981a). Rutherford-Bohr atom. American Journal of Physics, 49, 223–231.

    Google Scholar 

  • Heilbron, J. L. (1981b). Historical studies in the theory of atomic structure. New York: Arno Press.

    Google Scholar 

  • Hodson, D. (1992). Assessment of practical work. Science & Education, 1(2), 115–144.

    Article  Google Scholar 

  • Hodson, D. (2014). Nature of science in the science curriculum: Origin, development, implications and shifting emphases. In M. R. Matthews (Ed.), International Handbook of Research in History, Philosophy and Science Teaching (Vol. II, pp. 911–970). Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Hoffmann, R. (2012). In J. Kovac & M. Weisberg (Eds.), Roald Hoffmann on the philosophy, art, and science of chemistry. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Hoffmann, R. (2014). The tensions of scientific storytelling: Science depends on compelling narratives. American Scientist, 102, 250–253.

    Google Scholar 

  • Hoffmann, R., Shaik, S., & Hiberty, P. C. (2003). A conversation on VB vs MO theory: A never-ending rivalry? Accounts of Chemical Research, 36(10), 750–756.

    Article  Google Scholar 

  • Holton, G. (1978a). Subelectrons, presuppositions, and the Millikan-Ehrenhaft dispute. Historical Studies in the Physical Sciences, 9, 161–224.

    Google Scholar 

  • Holton, G. (1978b). On the educational philosophy of the Project Physics Course. In G. Holton (Ed.), The scientific imagination (pp. 294–298). New York: Cambridge University Press.

    Google Scholar 

  • Holton, G. (1999). R.A. Millikan’s struggle with the meaning of Planck’s constant. Physics in Perspective, 1, 231–237.

    Google Scholar 

  • Holton, G. (2014b). Personal communication, August 3, italics in the original.

    Google Scholar 

  • Hoyningen-Huene, P. (1993). Reconstructing scientific revolutions: Thomas S. Kuhn’s philosophy of science. Chicago: University of Chicago Press.

    Google Scholar 

  • Kalman, C. S. (2002). Developing critical thinking in undergraduate courses: A philosophical approach. Science & Education, 11(1), 83–94.

    Google Scholar 

  • Kalman, C. S. (2009a). A role for experiment in using the law of inertia to explain the nature of science: A comment on Lopes Coelho. Science & Education, 18(1), 25–31.

    Google Scholar 

  • Kalman, C. S. (2009b). The need to emphasize epistemology in teaching and research. Science & Education, 18(3–4), 325–347.

    Google Scholar 

  • Karam, R. (2014). Review of Achinstein’s Evidence and Method: Scientific strategies of Isaac Newton and James Clerk Maxwell. Science &Education, 23(10), 2137–2148.

    Google Scholar 

  • Koertge, N. (1996). Toward an integration of content and method in the science curriculum. Science & Education, 5(4), 391–406 (First published in 1969).

    Article  Google Scholar 

  • Kousathana, M., Demerouti, M., & Tsaparlis, G. (2005). Instructional misconceptions in acid-base equilibria: An analysis from a history and philosophy of science perspective. Science & Education, 14(2), 173–194.

    Google Scholar 

  • Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.

    Google Scholar 

  • Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge (pp. 91–195). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Lakatos, I. (1978). Newton’s effect on scientific standards. In J. Worrall & G. Currie (Eds.). The methodology of scientific research programmes. Vol I (pp. 193–236). Cambridge, UK: Cambridge University Press. (Early drafts of this paper were written in 1963–64, and published posthumously).

    Google Scholar 

  • Laloë, F. (2001). Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems. American Journal of Physics, 69, 655–701.

    Article  Google Scholar 

  • Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331–359.

    Article  Google Scholar 

  • Loving, C. C. (1991). The scientific theory profile: A philosophy of science models for science teachers. Journal of Research in Science Teaching, 28(9), 823–838.

    Article  Google Scholar 

  • Mackenzie, J., Good, R. G., & Brown, J. R. (2014). Postmodernism and science education: An appraisal. In M. R. Matthews (Ed.), International Handbook of Research in History, Philosophy and Science Teaching (Vol. II, pp. 1057–1086). Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Matthews, M. R. (2009). Science, worldviews and education: An introduction. Science & Education, 18(6–7), 641–666.

    Google Scholar 

  • McCarthy, C. L. (2014). Cultural studies in science education: Philosophical considerations. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (Vol. III, pp. 1927–1964). Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Michelson, A. A., & Morley, E. W. (1887). On the relative motion of the earth and the luminiferous ether. American Journal of Science, 34(3rd series), 333–345.

    Google Scholar 

  • Millikan, R. A. (1913). On the elementary electrical charge and the Avogadro constant. Physical Review, 2, 109–143.

    Google Scholar 

  • Millikan, R. A. (1916). A direct photoelectric determination of Planck’s “h”. Physical Review, 7, 355–388.

    Google Scholar 

  • Mugaloglu, E. Z. (2014). The problem of pseudoscience in science education and implications of constructivist pedagogy. Science & Education, 23(4), 829–842.

    Google Scholar 

  • Nanda, M. (2003). Prophets facing backward: Postmodern critiques of science and Hindu nationalism in India. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  • Niaz, M. (1998). From cathode rays to alpha particles to quantum of action: A rational reconstruction of structure of the atom and its implications for chemistry textbooks. Science Education, 82, 527–552.

    Article  Google Scholar 

  • Niaz, M. (2000a). A rational reconstruction of the kinetic molecular theory of gases based on history and philosophy of science and its implications for chemistry textbooks. Instructional Science, 28, 23–50.

    Google Scholar 

  • Niaz, M. (2000b). The oil drop experiment: A rational reconstruction of the Millikan-Ehrenhaft controversy and its implications for chemistry textbooks. Journal of Research in Science Teaching, 37(5), 480–508.

    Google Scholar 

  • Niaz, M. (2004). Exploring alternative approaches to methodology in educational research. Interchange, 35(2), 155–184.

    Article  Google Scholar 

  • Niaz, M. (2005). An appraisal of the controversial nature of the oil-drop experiment: Is closure possible? British Journal of the Philosophy of Science, 56, 681–702.

    Google Scholar 

  • Niaz, M. (2009). Critical appraisal of physical science as a human enterprise: Dynamics of scientific progress. Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Niaz, M. (2010). Science curriculum and teacher education: The role of presuppositions, contradictions, controversies and speculations vs Kuhn’s ‘normal science’. Teaching and Teacher Education, 26, 891–899.

    Article  Google Scholar 

  • Niaz, M. (2015). That the Millikan oil-drop experiment was simple and straightforward. In R. L. Numbers & K. Kampourakis (Eds.), Newton’s apple and other myths about science (pp. 157–163). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Niaz, M. (2016). Chemistry education and contributions from history and philosophy of science. Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Niaz, M. (2018). Evolving nature of objectivity in the history of science and its implications for science education. Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • O’Neill, D. K., & Polman, J. L. (2004). Why educate “little scientists?” Examining the potential of practice-based scientific literacy. Journal of Research in Science Teaching, 41(3), 234–266.

    Article  Google Scholar 

  • Park, H., Nielsen, W., & Woodruff, E. (2014). Students’ conceptions of the nature of science: Perspectives from Canadian and Korean middle school students. Science & Education, 23(5), 1169–1196.

    Google Scholar 

  • Piaget, J. (1971). Biology and knowledge. Edinburgh, Scotland: Edinburgh University Press.

    Google Scholar 

  • Polanyi, M. (1966). The tacit dimension. London: Routledge & Kegan Paul.

    Google Scholar 

  • Polanyi, M. (1972). Genius in science. Encounter, 38(1), 43–50.

    Google Scholar 

  • Quale, A. (2007). Radical constructivism, and the sin of relativism. Science & Education, 16(3–5), 231–266.

    Google Scholar 

  • Rampal, A. (1992). Maintaining the status quo — A response to Fred Wilson and John Wilson. Interchange, 23(3), 309–314.

    Article  Google Scholar 

  • Robottom, I. (1989). Social critique or social control: Some problems for evaluation in environmental education. Journal of Research in Science Teaching, 26(5), 435–443.

    Article  Google Scholar 

  • Rowbottom, D. P. (2013). Review of Feyerabend’s The tyranny of science. Science &Education, 22(5), 1229–1231.

    Google Scholar 

  • Shapin, S. (1996). The scientific revolution. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Siegel, H. (1979). On the distortion of the history of science in science education. Science Education, 63, 111–118.

    Google Scholar 

  • Sorgner, H. (2016). Challenging expertise: Paul Feyerabend vs. Harry Collins and Robert Evans on democracy, public participation and scientific authority. Studies in History and Philosophy of Science, 57, 114–120.

    Google Scholar 

  • Swartz, R. (1985). Dewey and Popper on learning from induction. Interchange, 16(4), 29–51.

    Article  Google Scholar 

  • Taber, K. S. (2014). Methodological issues in science education research: A perspective from the philosophy of science. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (Vol. III, pp. 1839–1893). Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Tolvanen, S., Jansson, J., Vesterinen, V.-M., & Aksela, M. (2014). How to use historical approach to teach nature of science in chemistry education? Science & Education, 23(8), 1605–1636.

    Article  Google Scholar 

  • Tro, N. (2008). Chemistry: A molecular approach. Upper Saddle River, NJ: Prentice Hall (Pearson Education).

    Google Scholar 

  • Van Strien, M. (2019). Pluralism and anarchism in quantum physics: Paul Feyerabend’s writings on quantum physics in relation to his general philosophy of science. Studies in History and Philosophy of Science (in press).

    Google Scholar 

  • Wilson, D. (1983). Rutherford: Simple genius. Cambridge, MA: MIT Press.

    Google Scholar 

  • Winchester, I. (1989). Editorial: History, science and science teaching. Interchange, 20(2), i–vi.

    Article  Google Scholar 

  • Winchester, I. (1993). “Science is dead. We have killed it, you and I” — How attacking the presuppositional structures of our scientific age can doom the interrogation of nature. Interchange, 24(1–2), 191–198.

    Article  Google Scholar 

  • Wolpert, L. (1993). The unnatural nature of science. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  • Worrall, J. (2010). Theory-change in science. In S. Psillos & M. Curd (Eds.), The Routledge companion to philosophy of science (pp. 281–291). New York: Routledge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niaz, M. (2020). Conclusion: Feyerabend and Challenges of the Twenty-First Century. In: Feyerabend’s Epistemological Anarchism. Contemporary Trends and Issues in Science Education, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-030-36859-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36859-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36858-6

  • Online ISBN: 978-3-030-36859-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics