Skip to main content

Feyerabend’s Counterinduction and Science Textbooks

  • Chapter
  • First Online:
Feyerabend’s Epistemological Anarchism

Part of the book series: Contemporary Trends and Issues in Science Education ((CTISE,volume 50))

  • 396 Accesses

Abstract

According to Feyerabend (1970a) most scientific theories are not consistent with all known facts (p. 43). Consequently, if we tell students to accept only those theories which are consistent with the available and accepted facts, we shall be left without any theory. To solve this dilemma, Feyerabend suggested a change in methodology by admitting counterinduction, namely accepting unsupported hypotheses. According to Kalman (2019b): “Counterinduction is the process by which one theory or idea is used to effect change in its rival.” Furthermore, all scientists working in a field of knowledge do not necessarily agree with respect to all “observations”, “experimental results” and “theories.” Such views may be considered as “apocalyptic” by some and Feyerabend himself as the worst enemy of science, who still paid the following tribute to science, “Science gives us theories of high beauty and sophistication. Modern science has developed mathematical structures which exceed anything that has existed so far in coherence and generality” (Feyerabend, 1970a, p. 42).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarriassecq, I., & Greca, I. M. (2007). Approaches to the teaching of special relativity theory in high school and university textbooks. Science & Education, 16(1), 65–86.

    Article  Google Scholar 

  • Abrams, G. S., & Perl, M. L. (1979). Measurement of the branching fraction for tau ➔ rho nu. Physics Review Letters, 43, 1555–1558.

    Article  Google Scholar 

  • Achinstein, P. (1987). Scientific discovery and Maxwell’s kinetic theory. Philosophy of Science, 54, 409–434.

    Article  Google Scholar 

  • Arabatzis, T., & Gavroglu, K. (2015). That the Michelson-Morley experiment paved the way for the special theory of relativity. In R. L. Numbers & K. Kampourakis (Eds.), Newton’s apple and other myths about science (pp. 149–156). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Bensaude-Vincent, B. (1986). Mendeleev’s periodic system of chemical elements. British Journal for the History of Science, 19, 3–17.

    Article  Google Scholar 

  • Bodner, G. & Pardue, H. (1989). Chemistry: An experimental science. New York: Wiley.

    Google Scholar 

  • Bohr, N. (1913). On the constitution of atoms and molecules. Part I. Philosophical Magazine, 26(series 6), 1–25.

    Google Scholar 

  • Bray, W. C., & Branch, G. E. K. (1913). Valence and tautomerism. Journal of American Chemical Society, 35, 1440–1447.

    Article  Google Scholar 

  • Brito, A., Rodríguez, M. A., & Niaz, M. (2005). A reconstruction of development of the periodic table based on history and philosophy of science and its implications for general chemistry textbooks. Journal of Research in Science Teaching, 42, 84–111.

    Article  Google Scholar 

  • Brush, S. G. (1976). The kind of motion we call heat: A history of the kinetic theory of gases in the 19th century. New York: North-Holland.

    Google Scholar 

  • Brush, S. G. (1996). The reception of Mendeleev’s periodic law in America and Britain. Isis, 87, 595–628.

    Article  Google Scholar 

  • Brush, S. G. (2000). Thomas Kuhn as a historian of science. Science & Education, 9, 39–58.

    Article  Google Scholar 

  • Cavalli-Sforza, M., Goggi, G., Mantovani, G. C., Piazzoli, A., Rossini, B., Scannicchio, D., et al. (1976). Anomalous production of high-energy muons in e+e- collisions at 4.8 GeV. Physics Review Letters, 36, 558–561.

    Article  Google Scholar 

  • Clark, P. (1976). Atomism and thermodynamics. In C. Howson (Ed.), Method and appraisal in the physical sciences: The critical background to modern science, 1800–1905 (pp. 41–105). Cambridge, MA: Cambridge University Presss.

    Chapter  Google Scholar 

  • Clausius, R. (1857). On the nature of the motion we call heat. Philosophical Magazine, 14, 108–127.

    Google Scholar 

  • Cooper, L. N. (1970). An introduction to the meaning and structure of physics (short edn). New York: Harper & Row.

    Google Scholar 

  • Cowan, C. L., et al. (1956). Detection of the free neutrino: A confirmation. Science, 124, 103–104.

    Article  Google Scholar 

  • Crease, R. M. (2002). Critical point: The most beautiful experiment. Physics World, 15(9), 19–20.

    Article  Google Scholar 

  • Crowther, J. G. (1910). Proceedings of the Royal Society (Vol. lxxxiv). London: Royal Society.

    Google Scholar 

  • Darrigol, O. (2009). A simplified genesis of quantum mechanics. Studies in History and Philosophy of Modern Physics, 40, 151–166.

    Article  Google Scholar 

  • Davisson, C., & Germer, L. H. (1927). Diffraction of electrons by a crystal of Nickel. Physical Review, 30(6), 705–740.

    Article  Google Scholar 

  • De Broglie, L. (1922). Journal de Physique, 3 (Series VI), 422.

    Google Scholar 

  • De Broglie, L. (1923a). Ondes et quanta. Comptes Rendus, 177, 507–510, 548–550, 630–632.

    Google Scholar 

  • De Broglie, L. (1923b). Waves and quanta. Nature, 112, 540.

    Article  Google Scholar 

  • De Broglie, L. (1924). A tentative theory of light quanta. Philosophical Magazine, 47(Series 6), 446–458.

    Google Scholar 

  • De Milt, C. (1951). The congress at Karlsruhe. Journal of Chemical Education, 28, 421–425.

    Article  Google Scholar 

  • Dickerson, R., Gray, H., Darensbourg, M. & Darensbourg, D. (1984). Chemical principles (4th ed.). Menlo Park, CA: Benjamin Cummings.

    Google Scholar 

  • Duhem, P. (1914). The aim and structure of physical theory (2nd ed., & P. P. Wiener, Trans.). New York: Atheneum (First published in 1905).

    Google Scholar 

  • Einstein, A. (1905). Über einen erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Annalen de Physik, 17, 132–148.

    Article  Google Scholar 

  • Einstein, A. (1916). Zur quantentheorie der strahlung. Zürich Mitteilungen, 18, 47–62.

    Google Scholar 

  • Feldman, G. J., & Perl, M. L. (1977). Inclusive anomalous muon production in e+e- annihilation. Physics Review Letters, 38, 117–120.

    Article  Google Scholar 

  • Feyerabend, P. K. (1970a). Against method: Outline of an anarchistic theory of knowledge. In M. Radner & S. Winokur (Eds.), Minnesota studies in the philosophy of science (Vol. IV, pp. 17–130). Mineapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Feyerabend, P. K. (1970b). Problems of empiricism, Part II. In R. G. Colodny (Ed.), The nature and function of scientific theories (pp. 275–353). Pittsburgh, PA: University of Pittsburgh Press.

    Google Scholar 

  • Feyerabend, P. K. (1970c). Consolations for the specialist. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge (pp. 197–230). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Feyerabend, P. K. (1970d). Classical empiricism. In R. E. Butts & J. W. Davis (Eds.), The methodological heritage of Newton (pp. 150–170). Oxford, UK: Basil Blackwell.

    Google Scholar 

  • Feyerabend, P. K. (1975a). Against method. Outline of an anarchist theory of knowledge. Londond: New Left Books.

    Google Scholar 

  • Feyerabend, P. K. (1993). Against method. Outline of an anarchistic theory of knowledge (3rd Rev and enlarged edn). New York: Verso.

    Google Scholar 

  • Feyerabend, P. K. (2011). The tyranny of science. Cambridge, UK: Polity Press (Based on Trent lectures delivered in 1992).

    Google Scholar 

  • Garber, E., Brush, S. G., & Everitt, C. W. F. (Eds.). (1986). Maxwell on molecules and gases. Cambridge, MA: MIT Press.

    Google Scholar 

  • Gavroglu, K. (2000). Controversies and the becoming of physical chemistry. In P. Machamer, M. Pera, & A. Baltas (Eds.), Scientific controversies: Philosophical and historical perspectives (pp. 177–198). New York: Oxford University Press.

    Google Scholar 

  • Geiger, H., & Marsden, E. (1909). On a diffuse reflection of the alpha particles. In Proceedings of the Royal Society (Vol. lxxxii). London: Royal Society.

    Google Scholar 

  • Giere, R. N. (2006a). Scientific perspectivism. Chicago: University of Chicago Press.

    Google Scholar 

  • Giere, R. N. (2006b). Perspectival pluralism. In S. H. Kellert, H. E. Longino, & C. K. Waters (Eds.), Scientific pluralism (pp. 26–41). Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Goldberg, D. (2001). Fundamentals of chemistry (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Gordin, M. D. (2004). A well-ordered thing: Dmitrii Mendeleev and the shadow of the periodic table. New York: Basic Books.

    Google Scholar 

  • Grosser, M. (1962). The discovery of Neptune. Cambridge, MA: Harvard University Press (Reprint, New York: Dover, 1979).

    Google Scholar 

  • Halliday, D. & Resnick, R. (1981). Fundamentals of Physics (2nd ed.). New York, NY: Wiley.

    Google Scholar 

  • Hanson, N. R. (1958). Patterns of discovery: An inquiry into the conceptual foundations of science. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hanson, N. R. (1964). On the structure of physical knowledge. In S. Elam (Ed.), Education and the structure of knowledge (pp. 148–187). Chicago: Rand McNally & Company.

    Google Scholar 

  • Hecht, E. (2003). Physics: Algebra/Trig (3rd ed.). Pacific Grove, CA: Thomson Brooks/Cole.

    Google Scholar 

  • Heilbron, J. L. (1981b). Historical studies in the theory of atomic structure. New York: Arno Press.

    Google Scholar 

  • Heilbron, J. L., & Kuhn, T. (1969). The genesis of the Bohr atom. Historical Studies in the Physical Sciences, 1, 211–290.

    Article  Google Scholar 

  • Hertz, H. (1883). Versuche über die Glimmentladung. Annalen der Physik, 19, 782–816.

    Article  Google Scholar 

  • Hertz, H. (1887). Ueber einen Einfluss des Ultravioletten Lichtes auf die Elektrische Entladung. Annalen der Physik, 31, 983–1000.

    Article  Google Scholar 

  • Hill, J. & Petrucci, R. (1999). General chemistry: An integrated approach (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Holton, G. (1969a). Einstein and “crucial” experiments. American Journal of Physics, 37(10), 968–982.

    Article  Google Scholar 

  • Holton, G. (1969b). Einstein, Michelson and the “crucial” experiment. Isis, 60, 133–197.

    Article  Google Scholar 

  • Holton, G. (1978a). Subelectrons, presuppositions, and the Millikan-Ehrenhaft dispute. Historical Studies in the Physical Sciences, 9, 161–224.

    Google Scholar 

  • Holton, G. (1978b). On the educational philosophy of the Project Physics Course. In G. Holton (Ed.), The scientific imagination (pp. 294–298). New York: Cambridge University Press.

    Google Scholar 

  • Holton, G. (1986). The advancement of science and its burdens. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Holton, G. (1992). Ernst Mach and the fortunes of positivism in America. Isis, 83, 27–60.

    Article  Google Scholar 

  • Holton, G. (1993). Science and anti-science. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Holton, G. (1999). R.A. Millikan’s struggle with the meaning of Planck’s constant. Physics in Perspective, 1, 231–237.

    Article  Google Scholar 

  • Holton, G. (2000). Personal communication, September 25.

    Google Scholar 

  • Holton, G. (2014a). The neglected mandate: Teaching science as part of our culture. Science & Education, 23, 1875–1877.

    Article  Google Scholar 

  • Holton, G. (2014b). Personal communication, August 3, italics in the original.

    Google Scholar 

  • Holtzclaw, H.F., & Robinson, W.R. (1988). General chemistry (8th ed.). Lexington, MA: Heath

    Google Scholar 

  • Jammer, M. (1966). The conceptual development of quantum mechanics. New York: McGraw-Hill.

    Google Scholar 

  • Joesten, M., Johnston, D., Netterville, J. & Wood, J. (1991). World of chemistry. Philadelphia: Saunders.

    Google Scholar 

  • Kalman, C. S. (2019b). Personal communication to author, February 26, reproduced with permission.

    Google Scholar 

  • Kitchener, R. F. (1993). Piaget’s epistemic subject and science education: Epistemological versus psychological issues. Science & Education, 2, 137–148.

    Article  Google Scholar 

  • Kitcher, P. (1993). The advancement of science: Science without legend, objectivity without illusions. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Klassen, S. (2006). A theoretical framework for contextual science teaching. Interchange, 37, 31–62.

    Article  Google Scholar 

  • Kohler, R. E. (1971). The origin of Lewis’s theory of the shared pair bond. Historical Studies in the Physical Sciences, 3, 343–376.

    Article  Google Scholar 

  • Kragh, H. (1999). Quantum generations: A history of physics in the twentieth century. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Krane, K. S. (1996). Modern physics (2nd ed.). New York: Wiley.

    Google Scholar 

  • Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.

    Google Scholar 

  • Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge (pp. 91–195). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Laudan, R., Laudan, L., & Donovan, A. (1988). Testing theories of scientific change. In A. Donovan, L. Laudan, & R. Laudan (Eds.), Scrutinizing science: Empirical studies of scientific change (pp. 3–44). Dordrecht, the Netherlands: Kluwer.

    Chapter  Google Scholar 

  • Lewis, G. N. (1916). The atom and the molecule. Journal of American Chemical Society, 38, 762–785.

    Article  Google Scholar 

  • Lewis, G. N. (1919). Letter to Robert Millikan (Reproduced in Kohler, 1971).

    Google Scholar 

  • Lewis, G. N. (1923). Valence and the structure of atoms and molecules. New York: Chemical Catalog.

    Google Scholar 

  • Lorentz, H. A. (1895). Versuch einer theorie de electrischen und optischen erscheinunungen in bewegten Körpern (collected papers, vol. 5). Leiden, the Netherlands: Brill.

    Google Scholar 

  • Lippincott, W.T., Garrett, A. & Verhoek, F. (1968). Chemistry: A study of matter (3rd ed.). New York: Wiley.

    Google Scholar 

  • Margenau, H. (1950). The nature of physical reality. New York: McGraw-Hill.

    Google Scholar 

  • Matthews, M. R. (1987). Experiment as the objectification of theory: Galileo’s revolution. In Proceedings of the second international seminar on misconceptions and educational strategies in science and mathematics (Vol. 1, pp. 289–298). Ithaca, NY: Cornell University.

    Google Scholar 

  • Maxwell, J. C. (1860). Illustrations of the dynamical theory of gases. Philosophical Magazine, 19, 19–32 (Reproduced in Scientific Papers, 1965, pp. 377–409, New York: Dover).

    Google Scholar 

  • Mayo, D. G. (1988). Brownian motion and the appraisal of theories. In A. Donovan, L. Laudan, & R. Laudan (Eds.), Scrutinizing science: Empirical studies of scientific change (pp. 219–243). Dordrecht, the Netherlands: Springer.

    Chapter  Google Scholar 

  • McMullin, E. (1985). Galilean idealization. Studies in History and Philosophy of Science, 16, 247–273.

    Article  Google Scholar 

  • McMurry, J. & Fay, R. (2001). Chemistry (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Medicus, H. A. (1974). Fifty years of matter waves. Physics Today, 27, 38–45.

    Article  Google Scholar 

  • Mendeleev, D. (1869). Ueber die beziehungen der eigenschaften zu den atom gewichten der elemente. Zeitschrift für Chemie, 12, 405–406.

    Google Scholar 

  • Mendeleev, D. (1879). The periodic law of the chemical elements. The Chemical News, 40, No. 1042.

    Google Scholar 

  • Mendeleev, D. (1889). The periodic law of the chemical elements. Journal of the Chemical Society, 55, 634–656 (Faraday lecture, delivered on 4 June 1889).

    Google Scholar 

  • Mendeleev, D. (1897). The principles of chemistry (2nd English ed., trans. of 6th Russian ed.). New York: American Home Library Company.

    Google Scholar 

  • Michelson, A. A. (1927). Studies in optics. Chicago: University of Chicago Press.

    Google Scholar 

  • Michelson, A. A., & Morley, E. W. (1887). On the relative motion of the earth and the luminiferous ether. American Journal of Science, 34(3rd series), 333–345.

    Article  Google Scholar 

  • Miller, D. C. (1925). Science, 61, 617.

    Article  Google Scholar 

  • Miller, D. C. (1933). The ether-drift experiment and the determination of the absolute motion of the earth. Review of Modern Physics, 5, 204–242.

    Article  Google Scholar 

  • Millikan, R. A. (1913). On the elementary electrical charge and the Avogadro constant. Physical Review, 2, 109–143.

    Article  Google Scholar 

  • Millikan, R. A. (1916). A direct photoelectric determination of Planck’s “h”. Physical Review, 7, 355–388.

    Article  Google Scholar 

  • Moore, J.W., Stanitski, C.L. & Jurs, P. C. (2002). Chemistry: The molecular science. Orlando, FL: Harcourt College Publishers.

    Google Scholar 

  • Moseley, H. G. J. (1913). High frequency spectra of the elements. Philosophical Magazine, 26, 1025–1034.

    Google Scholar 

  • Moseley, H. G. J. (1914). High frequency spectra of the elements. Part II. Philosophical Magazine, 27, 703–713.

    Google Scholar 

  • Motterlini, M. (1999). Ed. For and against method: Including Lakatos’s lectures on scientific method and the Lakatos-Feyerabend correspondence. Chicago: University of Chicago Press.

    Google Scholar 

  • Niaz, M. (1993). If Piaget’s epistemic subject is dead, shall we bury the scientific methodology of idealization. Journal of Research in Science Teaching, 30, 809–812.

    Article  Google Scholar 

  • Niaz, M. (2000a). A rational reconstruction of the kinetic molecular theory of gases based on history and philosophy of science and its implications for chemistry textbooks. Instructional Science, 28, 23–50.

    Article  Google Scholar 

  • Niaz, M. (2000b). The oil drop experiment: A rational reconstruction of the Millikan-Ehrenhaft controversy and its implications for chemistry textbooks. Journal of Research in Science Teaching, 37(5), 480–508.

    Article  Google Scholar 

  • Niaz, M. (2001). A rational reconstruction of the origin of the covalent bond and its implications for general chemistry textbooks. International Journal of Science Education, 23(6), 623–641.

    Article  Google Scholar 

  • Niaz, M. (2005). An appraisal of the controversial nature of the oil-drop experiment: Is closure possible? British Journal of the Philosophy of Science, 56, 681–702.

    Google Scholar 

  • Niaz, M. (2012). From ‘science in the making’ to understanding the nature of science: An overview for science educators. New York: Routledge.

    Google Scholar 

  • Niaz, M. (2015). That the Millikan oil-drop experiment was simple and straightforward. In R. L. Numbers & K. Kampourakis (Eds.), Newton’s apple and other myths about science (pp. 157–163). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Niaz, M. (2016). Chemistry education and contributions from history and philosophy of science. Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Niaz, M. (2017). Relationship between domain-specific and domain-general aspects of nature of science in science textbooks. In C. V. McDonald & F. Abd-El-Khalick (Eds.), Representations of nature of science in school science textbooks (pp. 61–78). New York: Routledge.

    Chapter  Google Scholar 

  • Niaz, M., Abd-El-Khalick, F., Benarroch, A., Cardellini, L., Laburu, C. E., Marín, N., et al. (2003). Constructivism: Defense or a continual critical appraisal — A response to Gil-Pérez, et al. Science & Education, 12(8), 787–797.

    Google Scholar 

  • Niaz, M., Klassen, S., McMillan, B., & Metz, D. (2010). Reconstruction of the history of the photoelectric effect and its implications for general physics textbooks. Science Education, 94, 903–931.

    Google Scholar 

  • Niaz, M., & Luiggi, M. (2014). Facilitating conceptual change in students’ understanding of the periodic table. Dordrecht, the Netherlands: Springer.

    Book  Google Scholar 

  • Niaz, M., & Marcano, C. (2012). Reconstruction of wave-particle duality and its implications for general chemistry textbooks. Dordrecht, the Netherlands: Springer.

    Book  Google Scholar 

  • Niaz, M., & Maza, A. (2011). Nature of science in general chemistry textbooks. Dordrecht, the Netherlands: Springer.

    Book  Google Scholar 

  • Niaz, M., & Rivas, M. (2016). Students’ understanding of research methodology in the context of dynamics of scientific progress. Dordrecht, the Netherlands: Springer.

    Book  Google Scholar 

  • Niaz, M., & Rodríguez, M. A. (2001). Do we have to introduce history and philosophy of science or is it already “inside” chemistry? Chemistry Education: Research and Practice in Europe, 2, 159–164.

    Google Scholar 

  • Niaz, M., Rodríguez, M. A., & Brito, A. (2004). An appraisal of Mendeleev’s contribution to the development of the periodic table. Studies in History and Philosophy of Science, 35, 271–282.

    Article  Google Scholar 

  • Nola, R. (1997). Constructivism in science and science education: A philosophical critique. Science & Education, 6, 55–83.

    Article  Google Scholar 

  • Novak, J. D. (1990). Concept mapping: A useful tool for science education. Journal of Research in Science Teaching, 27(10), 937–949.

    Article  Google Scholar 

  • Olenick, R. P., Apostol, T. M., & Goodstein, D. L. (1985). Beyond the mechanical universe. From electricity to modern physics. New York: Cambridge University Press.

    Google Scholar 

  • Ospina, J. (2010). Efecto fotoeléctrico: Una reconstrucción racional basada en la historia y filosofía de la ciencia y sus implicaciones para los textos de química general. Master of Science Thesis (chemistry education), Cumaná, Venezuela: Universidad de Oriente.

    Google Scholar 

  • Pais, A. (1982). “Subtle is the Lord …” The science and the life of Albert Einstein. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Perl, M. L. (1997). Reflections on the discovery of the Tau Lepton. In G. Ekspong (Ed.), Nobel lectures, physics 1991–1995 (pp. 168–195). Singapore: World Scientific Publishing Co. (Nobel prize acceptance speech delivered on December 8, 1995).

    Google Scholar 

  • Perl, M. L. (2004). The discovery of the Tau Lepton and the changes in elementary-particle physics in forty years. Physics in Perspective, 6, 401–427.

    Google Scholar 

  • Perl, M. L. (2007). A contrarian view of how to develop creativity in science and engineering. Paper presented at The Eighth Olympiad of the Mind, The National Academies, Washington, DC, November (SLAC-PUB-12850).

    Google Scholar 

  • Perl, M. L., Abrams, G. S., Boyarski, A. M., Breidenbach, M., Briggs, D. D., Bulos, F., et al. (1975). Evidence for anomalous lepton production in e+-e- annihilation. Physics Review Letters, 35, 1489–1492.

    Article  Google Scholar 

  • Perrin, J. (1923). Atoms (D. L. Hammick, Trans.). London: Constable.

    Google Scholar 

  • PLUTO-Collaboration, et al. (1977). Anomalous muon production e+e- annihilations as evidence for heavy leptons. Physics Letters B, 68, 297–300.

    Article  Google Scholar 

  • Polanyi, M. (1964). Personal knowledge: Towards a post-critical philosophy. New York: Harper & Row (First published 1958 by the University of Chicago Press).

    Google Scholar 

  • Popper, K. R. (1959). The logic of scientific discovery. New York: Harper & Row.

    Google Scholar 

  • Popper, K. R. (1963a). Conjectures and refutations. London: Routledge and Kegan Paul.

    Google Scholar 

  • Ramsay, W. (1897). An undiscovered gas (address to the Section of Chemical Sciences of the British Association). Nature, 56, 378–382.

    Google Scholar 

  • Ramsay, W., & Travers, M. W. (1901). Philosophical Transactions of the Royal Society A, 197, 47.

    Google Scholar 

  • Reines, F. (1997). The neutrino: From poltergeist to particle. In G. Ekspong (Ed.), Nobel lectures, physics, 1991–1995 (pp. 202–221). Singapore, Singapore: World Scientific Publishing Co..

    Google Scholar 

  • Rodebush, W. H. (1928). The electron theory of valence. Chemical Review, 5, 509–531.

    Article  Google Scholar 

  • Rodríguez, M. A., & Niaz, M. (2004). A reconstruction of structure of the atom and its implications for general physics textbooks. Journal of Science Education and Technology, 13, 409–424.

    Article  Google Scholar 

  • Rucker, W. A., & Kelvin, L. (1895). Contribution to untitled comments. Chemical News, 71(1836), 62.

    Google Scholar 

  • Rutherford, E. (1911). The scattering of alpha and beta particles by matter and the structure of the atom. Philosophical Magazine, 21, 669–688.

    Google Scholar 

  • Rutherford, E. (1915). The constitution of matter and the evolution of the elements. In Address to the annual meeting of the National Academy of Sciences (pp. 167–202). Washington, DC: Smithsonian Institution.

    Google Scholar 

  • Sandin, T. R. (1989). Modern physics. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Sears, F.W., Zemansky, M.W. & Young, H.D. (1991). College Physics (7th ed.). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Segal, B. (1989). Chemistry: Experiment and theory ( 2nd ed.). New York: Wiley.

    Google Scholar 

  • Serway, R. A. (1996). Physics for scientists and engineers with modern physics (4th ed., Spanish). New York: McGraw-Hill.

    Google Scholar 

  • Shankland, R. S. (1963). Conversations with Albert Einstein. American Journal of Physics, 31, 47–57.

    Article  Google Scholar 

  • Shankland, R. S. (1964). The Michelson-Morley experiment. American Journal of Physics, 32, 23.

    Google Scholar 

  • Shapere, D. (1977). Scientific theories and their domains. In F. Suppe (Ed.), The structure of scientific theories (2nd ed., pp. 518–565). Chicago: University of Illinois Press.

    Google Scholar 

  • Sisler, H., Dresdner, R. & Mooney, W. (1980). Chemistry: A systematic approach. New York: Oxford University Press.

    Google Scholar 

  • Smart, W. M. (1946). John Couch Adams and the discovery of Neptune. Nature, 158, 648–652.

    Article  Google Scholar 

  • Thomson, J. J. (1897). Cathode rays. Philosophical Magazine, 44, 293–316.

    Google Scholar 

  • Thomson, J. J. (1907). The corpuscular theory of matter. London: Constable.

    Google Scholar 

  • Thomson, J. J. (1914). The forces between atoms and chemical affinity. Philosophical Magazine, 27, 757–789.

    Google Scholar 

  • Van Spronsen, J. (1969). The periodic system of chemical elements. A history of the first hundred years. Amsterdam, the Netherlands: Elsevier.

    Google Scholar 

  • Wartofsky, M. W. (1968). Conceptual foundations of scientific thought: An introduction to the philosophy of science. New York: Macmillan.

    Google Scholar 

  • Weisberg, M. (2007). Who is a modeler? British Joural for the Philosophy of Science, 58, 207–233.

    Article  Google Scholar 

  • Wheaton, B. R. (1983). The tiger and the shark: Empirical roots of wave-particle dualism. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Wilson, D. (1983). Rutherford: Simple genius. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ziman, J. (1978). Reliable knowledge: An exploration of the grounds for belief in science. Cambridge, UK: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niaz, M. (2020). Feyerabend’s Counterinduction and Science Textbooks. In: Feyerabend’s Epistemological Anarchism. Contemporary Trends and Issues in Science Education, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-030-36859-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36859-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36858-6

  • Online ISBN: 978-3-030-36859-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics