Skip to main content

Corrosion Resistance and Hydrophobic Properties of Gradient Coatings Based on Carbon and Alloying Elements

  • Conference paper
  • First Online:
  • 1565 Accesses

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 101))

Abstract

Gradient metal doped diamond-like carbon (Me/ɑ-C(5…20 Hz):Me, where Me–Ti, Cr, Al) coatings were deposited by the synergy of pulse cathode arc and direct-current cathode arc, and C content was adjusted by changing the pulse frequency. The microstructure, composition, surface morphology, the hydrophobicity and corrosion resistance of the coatings were investigated by Ra-man, XPS, SEM, contact angle measurements and potentiodynamic polarization tests, respectively. The XPS method established the formation of carbide com-pounds in the coatings obtained. It is stated that the ratio of carbide/carbon phases in the coating is determined by the type of alloying metal. The values of contact wetting angles for all coatings do not exceed 90°, therefore, the surface is well wetted by a corrosive medium and stays hydrophilic. The analysis of the polarization curves showed that the presence of gradient coatings on the surface leads to the increase in the corrosion resistance of the steel substrate. Cr/ɑ-C(5…20 Hz):Cr coatings are characterized by the highest corrosion resistance. This work is devoted to the studying of influences of type of metal on structure and anti-corrosion property of gradient coatings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cui, X.-J., Ning, C.-M., Shang, L.-L., Zhang, G.-A., Liu, X.-Q.: Structure and anticorrosion, friction, and wear characteristics of pure diamond-like carbon (DLC), Cr-DLC, and Cr-H-DLC films on AZ91D Mg Alloy. J. Mater. Eng. Perform. 28, 1213–1225 (2018). https://doi.org/10.1007/s11665-019-3854-8

    Article  Google Scholar 

  2. Niu, F., Ma, J., Yu, L., Zhang, P.: Electrochemical deposition and characterization of diamond-like carbon films doped with surface-capped silica nanoparticles. Surf. Coat. Technol. 221, 77–87 (2013). https://doi.org/10.1016/j.surfcoat.2013.01.030

    Article  Google Scholar 

  3. Bewilogua, K., Hofmann, D.: History of diamond-like carbon films – From first experiments to worldwide applications. Surf. Coat. Tech. 242, 214–225 (2014). https://doi.org/10.1016/j.surfcoat.2014.01.031

    Article  Google Scholar 

  4. Miao, Y.M., Jiang, X.H., Piliptsou, D.G., Zhuang, Y., Rogachev, A.V., Rudenkov, A.S., Balmakou, A.: Chromium-modified a-C films with advanced structural, mechanical and corrosive-resistant characteristics. Appl. Surf. Sci. 379, 424–432 (2016). https://doi.org/10.1016/j.apsusc.2016.04.112

    Article  Google Scholar 

  5. Zhang, L.F., Wang, F., Qiang, L., Gao, K., Zhang, B., Zhang, J.: Recent advances in the mechanical and tribological properties of fluorine-containing DLC films. RSC Adv. 5, 9635–9649 (2015). https://doi.org/10.1039/C4RA14078H

    Article  Google Scholar 

  6. Yildiz, R.: An electrochemical and theoretical evaluation of 4,6-diamino-2 pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions. Corros. Sci. 90, 544–553 (2015). https://doi.org/10.1016/j.corsci.2014.10.047

    Article  Google Scholar 

  7. Guo, W., Li, X., Chen, M., Xu, L., Dong, L., Cao, X., Tang, W., Zhu, J., Lin, C., Pan, C., Wang, Z.L.: Electrochemical cathodic protection powered by triboelectric nano-generator. Adv. Funct. Mater. 24, 6691–6699 (2014). https://doi.org/10.1016/j.corsci.2014.10.047

    Article  Google Scholar 

  8. Son, M.J., Zhang, T.F., Jo, Y.J., Kim, K.H.: Enhanced electrochemical properties of the DLC films with an arc interlayer, nitrogen doping and annealing. Surf. Coat. Tech. 329, 77–85 (2017). https://doi.org/10.1016/j.surfcoat.2017.09.025

    Article  Google Scholar 

  9. Cui, M.J., Pu, J., Zhang, G., Wang, L., Xue, Q.: The corrosion behaviors of multilayer diamond-like carbon coatings: influence of deposition periods and corrosive medium. RSC Adv. 6, 28570–28578 (2016). https://doi.org/10.1039/C6RA05527C

    Article  Google Scholar 

  10. Zhang, L.F., Wang, F., Qiang, L., Gao, K., Zhang, B., Zhang, J.: Recent advances in the mechanical and tribological properties of fluorine-containing DLC films. RSC Adv. 5, 9635–9649 (2015). https://doi.org/10.1039/C4RA14078H

    Article  Google Scholar 

  11. Dai, W., Wua, G., Wang, A.: Preparation, characterization and properties of Cr-incorporated DLC films on magnesium alloy. Diam. Rel. Mat. 19, 1307–1315 (2010). https://doi.org/10.1016/j.diamond.2010.06.018

    Article  Google Scholar 

  12. Dai, W., Ke, P.L., Wang, A.Y.: Microstructure and property evolution of Cr-DLC films with different Cr content deposited by a hybrid beam technique. Vacuum 85, 792–797 (2011). https://doi.org/10.1016/j.vacuum.2010.11.013

    Article  Google Scholar 

  13. Rogachev, A.V., Kulesh, E.A, Piliptsou, D.G., Rudenkov, A.S., Hong, J.X.: Structure and mechanical properties of gradient metal-carbon coatings. In: Recent Advances in Technology Research and Education., vol. 53. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99834-3_1

    Google Scholar 

  14. Andersson, M., Högström, J., Urbonaite, S., Furlan, A., Nyholm, L., Jansson, U.: Deposition and characterization of magnetron sputtered amorphous Cr–C films. Vacuum 86(9), 1408–1422 (2012). https://doi.org/10.1016/j.vacuum.2012.01.021

    Article  Google Scholar 

  15. Cloutier, M., Harnagea, C., Hale, P., Seddiki, O., Rosei, F., Mantovani, D.: Long-term stability of hydrogenated DLC coatings: Effects of aging on the structural, chemical and mechanical properties. Diam. Relat. Mat. 48, 65–72 (2014). https://doi.org/10.1016/j.diamond.2014.07.002

    Article  Google Scholar 

  16. Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. 37, 129–281 (2002). https://doi.org/10.1016/S0927-796X(02)00005-0

    Article  Google Scholar 

  17. Martínez-Martínez, D., López-Cartes, C., Fernández, A., Sánchez-López, J.C.: Influence of the microstructure on the mechanical and tribological behavior of TiC/a-C nanocomposite coating. Thin Solid Films 517, 1662–1671 (2009). https://doi.org/10.1016/j.tsf.2008.09.091

    Article  Google Scholar 

  18. Wang, Q., Zhou, F., Zhou, Z., Yang, Y., Yan, C., Wang, C., Zhang, W., Li, L.K.-Y., Bello, I., Lee, S.-T.: Influence of Ti content on the structure and tribological properties of Ti-DLC coatings in water lubrication. Diam. Relat. Mat. 25, 163–175 (2012). https://doi.org/10.1016/j.diamond.2012.03.005

    Article  Google Scholar 

  19. Viswanathan, S., Mohan, L., Bera, P., Kumar, V.P., Barshilia, H.C., Anandan, C.: Corrosion and Wear Behaviors of Cr-Doped Diamond-Like Carbon Coatings. J. Mater. Engin. Perform. 28, 3633–3647 (2017). https://doi.org/10.1007/s11665-017-2783-7

    Article  Google Scholar 

  20. Wei, X.: Hydrophobicity of hydrogen DLC films. Surf. Technol. 45(5), 154–161 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Intergovernmental Cooperation Projects in the National Key Research and Development Plan of the Ministry of Science and Technology of PRC (projects No. 2016YFE0111800, for 2016–2019), the Belarusian Republican Foundation for Fundamental Research (project No. T18КИ-008, for 2018–2019)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr V. Rogachev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulesh, E.A., Rogachev, A.V., Piliptsou, D.G., Rudenkov, A.S., Hong, J.X., Emel´yanov, V.A. (2020). Corrosion Resistance and Hydrophobic Properties of Gradient Coatings Based on Carbon and Alloying Elements. In: Várkonyi-Kóczy, A. (eds) Engineering for Sustainable Future. INTER-ACADEMIA 2019. Lecture Notes in Networks and Systems, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-030-36841-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36841-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36840-1

  • Online ISBN: 978-3-030-36841-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics