Skip to main content

Prediction of Combine Harvester Performance Using Hybrid Machine Learning Modeling and Response Surface Methodology

  • Conference paper
  • First Online:
Engineering for Sustainable Future (INTER-ACADEMIA 2019)

Abstract

Automated controlling the harvesting systems can significantly increase the efficiency of the agricultural practices and prevent food wastes. Modeling and improvement of the combine harvester can increase the overall performance. Machine learning methods provide the opportunity of advanced modeling for accurate prediction of the highest performance of the machine. In this study, the modeling of combine harvesting id performed using radial basis function (RBF) and the hybrid machine learning method of adaptive neuro-fuzzy inference system (ANFIS) to predict various variables of the combine harvester for the optimal performance. Response surface methodology (RSM) is also used to optimize the models. The comparative study shows that the ANFIS method outperforms the RBF method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khorram, T.: The interaction effect of seive openess and thresher clearence on threshing quality, in Thesis of Master scienc. Department of Biosystem engineering. University of Mohaghegh Ardabili. Ardabil, Iran (2013)

    Google Scholar 

  2. Singh, A., Garg, I., Sharma, V.: Effect of different crop and operational parameters of a combine on grain damage during paddy harvesting. J. Res. 38(3 and 4), 241–252 (2001)

    Google Scholar 

  3. FAO, FAOSTAT data base. FAO, Rome (2008)

    Google Scholar 

  4. Craessaerts, G., et al.: A genetic input selection methodology for identification of the cleaning process on a combine harvester, Part I: Selection of relevant input variables for identification of the sieve losses. Biosys. Eng. 98(2), 166–175 (2007)

    Article  Google Scholar 

  5. Maertens, K., Reyniers, M., De Baerdemaeker, J.: Design of a Dynamic Grain Flow Model for a Combine Harvester (2001)

    Google Scholar 

  6. Spengler, A., Mehne, S., Feiffer, A.: Combine harvesting at large scale enterprises in Europe. In: Electronic Proceedings of the International Conference on Crop Harvesting and Processing, Louisville, Ky (2003)

    Google Scholar 

  7. Maertens, K., De Baerdemaeker, J.: Design of a virtual combine harvester. Math. Comput. Simul. 65(1–2), 49–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Maertens, K.: Data-driven techniques for the on-the-go evaluation of separation processes in combine harvesters. Ph.D. Thesis. Department of Agro-Engineering and Economics, Katholieke Universiteit Leuven, Leuven, Belgium (2004)

    Google Scholar 

  9. Naderloo, L., et al.: Application of ANFIS to predict crop yield based on different energy inputs. Measurement 45(6), 1406–1413 (2012)

    Article  Google Scholar 

  10. Gautam, R., Panigrahi, S., Franzen, D.: Neural network optimisation of remotely sensed maize leaf nitrogen with a genetic algorithm and linear programming using five performance parameters. Biosys. Eng. 95(3), 359–370 (2006)

    Article  Google Scholar 

  11. Soyguder, S., Alli, H.: An expert system for the humidity and temperature control in HVAC systems using ANFIS and optimization with fuzzy modeling approach. Energy Build. 41(8), 814–822 (2009)

    Article  Google Scholar 

  12. Safa, M., Samarasinghe, S.: Determination and modelling of energy consumption in wheat production using neural networks:“A case study in Canterbury province, New Zealand”. Energy 36(8), 5140–5147 (2011)

    Article  Google Scholar 

  13. Mansouri raad, D.: Tractors and Agricultural Machinery, vol. 2. Publication of Bo-ali sina university. Hamadan, Iran (1993)

    Google Scholar 

  14. Faizollahzadeh_Ardabili, S.: Simulation and Comparison of Control System in Mushroom Growing Rooms Environment. Thesis of Master science. Department of Mechanic of Agricultural Machinery Engineering. University of Tabriz. Tabriz, Iran (2014)

    Google Scholar 

  15. Faizollahzadeh_Ardabili, et al.: Modeling and comparison of fuzzy and on/off controller in a mushroom growing hall. Measurement 90, 127–134 (2016)

    Article  Google Scholar 

  16. Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference system. Syst. Man Cybern. IEEE Trans. 23(3), 665–685 (1993)

    Article  Google Scholar 

  17. Faizollahzadeh_Ardabili, Mahmoudi, A., Mesri Gundoshmian, T.: Modeling and simulation controlling system of HVAC using fuzzy and predictive (radial basis function, RBF) controllers. J. Build. Eng. 6, 301–308 (2016)

    Article  Google Scholar 

  18. Soyguder, S.: Intelligent system based on wavelet decomposition and neural network for predicting of fan speed for energy saving in HVAC system. Energy Build. 43(4), 814–822 (2011)

    Article  Google Scholar 

  19. Chen, X.-T., Zhang, L.-H.: High-quality voice conversion system based on GMM statistical parameters and RBF neural network. J. China Universities Posts Telecommun. 21(5), 68–75 (2014)

    Article  Google Scholar 

  20. Craessaerts, G., et al.: A genetic input selection methodology for identification of the cleaning process on a combine harvester, Part II: Selection of relevant input variables for identification of material other than grain (MOG) content in the grain bin. Biosys. Eng. 98(3), 297–303 (2007)

    Article  Google Scholar 

  21. Maertens, K., De Baerdemaeker, J.: Design of a virtual combine harvester. Math. Comput. Simul. 65(1), 49–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhao, Z., et al.: Grain separation loss monitoring system in combine harvester. Comput. Electron. Agric. 76(2), 183–188 (2011)

    Article  Google Scholar 

  23. Mirzazadeh, A., et al.: Intelligent modeling of material separation in combine harvester’s thresher by ANN. Int. J. Agric. Crop Sci. 4(23), 1767–1777 (2012)

    Google Scholar 

  24. Maertens, K., et al.: PH—power and machinery: an analytical grain flow model for a combine harvester, Part I: design of the model. J. Agric. Eng. Res. 79(1), 55–63 (2001)

    Article  Google Scholar 

  25. Maertens, K., et al.: PA—precision agriculture: an analytical grain flow model for a combine harvester, part ii: analysis and application of the model. J. Agric. Eng. Res. 79(2), 187–193 (2001)

    Article  Google Scholar 

  26. Miu, P.I., Kutzbach, H.-D.: Modeling and simulation of grain threshing and separation in threshing units—Part I. Comput. Electron. Agric. 60(1), 96–104 (2008)

    Article  Google Scholar 

  27. Miu, P.I., Kutzbach, H.-D.: Modeling and simulation of grain threshing and separation in axial threshing units: Part II. Application to tangential feeding. Comput. Electron. Agric. 60(1), 105–109 (2008)

    Article  Google Scholar 

  28. Peter, I.M.: Optimal Design Threshing Units Based on a Genetic Algorithm. I. Algorithm. ASAE

    Google Scholar 

  29. Miu, P.I., Kutzbach, H.D.: Simulation of threshing and separation processes in threshing units. Agrartechnische Forschung 6, 1–7 (2000)

    Google Scholar 

  30. Myhan, R., Jachimczyk, E.: Grain separation in a straw walker unit of a combine harvester: Process model. Biosys. Eng. 145, 93–107 (2016)

    Article  Google Scholar 

  31. Mosavi, A., Edalatifar, M.: A Hybrid Neuro-Fuzzy Algorithm for Prediction of Reference Evapotranspiration, in Lecture Notes in Networks and Systems, pp. 235–243. Springer (2019)

    Google Scholar 

  32. Mosavi, A., Lopez, A., Várkonyi-Kóczy, A.R.: Industrial applications of big data: state of the art survey, D. Luca, L. Sirghi, and C. Costin, Editors, pp. 225–232. Springer (2018)

    Google Scholar 

  33. Mosavi, A., Ozturk, P., Chau, K.W.: Flood prediction using machine learning models: literature review. Water (Switzerland) 10(11) (2018)

    Article  Google Scholar 

  34. Mosavi, A., Rabczuk, T.: Learning and intelligent optimization for material design innovation. In: Kvasov, D.E. et al. (eds.), pp. 358–363. Springer (2017)

    Google Scholar 

  35. Mosavi, A., Rabczuk, T., Várkonyi-Kóczy, A.R.: Reviewing the novel machine learning tools for materials design. In: Luca, D., Sirghi, L., Costin, C. (eds.), pp. 50–58. Springer (2018)

    Google Scholar 

  36. Mosavi, A., et al.: State of the art of machine learning models in energy systems, a systematic review. Energies 12(7) (2019)

    Article  Google Scholar 

  37. Mosavi, A., et al.: Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning. Eng. Appl. Comput. Fluid Mech. 13(1), 482–492 (2019)

    Google Scholar 

  38. Mosavi, A., Várkonyi-Kóczy, A.R.: Integration of machine learning and optimization for robot learning. In: Jablonski, R., Szewczyk, R. (eds.), pp. 349–355. Springer (2017)

    Google Scholar 

  39. Nosratabadi, S., et al.: Sustainable business models: a review. Sustainability (Switzerland) 11(6) (2019)

    Google Scholar 

  40. Qasem, S.N., et al.: Estimating daily dew point temperature using machine learning algorithms. Water (Switzerland) 11(3) (2019)

    Article  Google Scholar 

  41. Rezakazemi, M., Mosavi, A., Shirazian, S.: ANFIS pattern for molecular membranes separation optimization. J. Mol. Liq. 274, 470–476 (2019)

    Article  Google Scholar 

  42. Riahi-Madvar, H., et al.: Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry. Eng. Appl. Comput. Fluid Mech. 13(1), 529–550 (2019)

    Google Scholar 

  43. Shabani, S., Samadianfard, S., Taghi Sattari, M., Shamshirband, S., Mosavi, A., Kmet, T., Várkonyi-Kóczy, A.R.: Modeling Daily Pan Evaporation in Humid Climates Using Gaussian Process Regression. Preprints (2019), 2019070351. https://doi.org/10.20944/preprints201907.0351.v1

  44. Shamshirband, S., Hadipoor, M., Baghban, A., Mosavi, A., Bukor J., Várkonyi-Kóczy, A.R.: Developing an ANFIS-PSO Model to predict mercury emissions in Combustion Flue Gases. Preprints (2019), 2019070165. https://doi.org/10.20944/preprints201907.0165.v1

  45. Shamshirband, S., et al.: Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters. Eng. Appl. Comput. Fluid Mech. 13(1), 91–101 (2019)

    Google Scholar 

  46. Shamshirband, S., Mosavi, A., Rabczuk, T.: Particle swarm optimization model to predict scour depth around bridge pier. arXiv preprint arXiv:1906.08863 (2019)

  47. Taherei Ghazvinei, P., et al.: Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Eng. Appl. Comput. Fluid Mech. 12(1), 738–749 (2018)

    Google Scholar 

  48. Torabi, M., et al.: A Hybrid clustering and classification technique for forecasting short-term energy consumption. Environ. Prog. Sustain. Energy 38(1), 66–76 (2019)

    Article  Google Scholar 

  49. Torabi, M., et al.: A hybrid machine learning approach for daily prediction of solar radiation. In: Lecture Notes in Networks and Systems, pp. 266–274. Springer (2019)

    Google Scholar 

  50. Aram, F., et al.: Design and validation of a computational program for analysing mental maps: aram mental map analyzer. Sustainability (Switzerland). 11(14) (2019)

    Article  Google Scholar 

  51. Asadi, E., et al.: Groundwater Quality Assessment for Drinking and Agricultural Purposes in Tabriz Aquifer, Iran (2019)

    Google Scholar 

  52. Asghar, M.Z., Subhan, F., Imran, M., Kundi, F.M., Shamshirband, S., Mosavi, A., Csiba, P., Várkonyi-Kóczy, A.R.: Performance Evaluation of Supervised Machine Learning Techniques for Efficient Detection of Emotions from Online Content. Pre-prints 2019, 2019080019. https://doi.org/10.20944/preprints201908.0019.v1

  53. Bemani, A., Baghban, A., Shamshirband, S., Mosavi, A., Csiba, P., Várkonyi-Kóczy, A.R.: Applying ANN, ANFIS, and LSSVM Models for Estimation of Acid Sol-vent Solubility in Supercritical CO2. Preprints (2019), 2019060055. https://doi.org/10.20944/preprints201906.0055.v2

  54. Choubin, B., et al.: Snow avalanche hazard prediction using machine learning methods. J. Hydrol., 577 (2019)

    Article  Google Scholar 

  55. Choubin, B., et al.: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci. Total Environ. 651, 2087–2096 (2019)

    Article  Google Scholar 

  56. Dehghani, M., et al.: Prediction of hydropower generation using Grey wolf optimization adaptive neuro-fuzzy inference system. Energies 12(2) (2019)

    Article  Google Scholar 

  57. Dineva, A., et al.: Review of soft computing models in design and control of rotating electrical machines. Energies 12(6) (2019)

    Article  Google Scholar 

  58. Dineva, A., et al.: Multi-Label Classification for Fault Diagnosis of Rotating Electrical Machines (2019)

    Google Scholar 

  59. Farzaneh-Gord, M., et al.: Numerical simulation of pressure pulsation effects of a snubber in a CNG station for increasing measurement accuracy. Eng. Appl. Comput. Fluid Mech. 13(1), 642–663 (2019)

    Google Scholar 

  60. Ghalandari, M., et al.: Investigation of submerged structures’ flexibility on sloshing frequency using a boundary element method and finite element analysis. Eng. Appl. Comput. Fluid Mech. 13(1), 519–528 (2019)

    Google Scholar 

  61. Ghalandari, M., et al.: Flutter speed estimation using presented differential quadrature method formulation. Eng. Appl. Comput. Fluid Mech. 13(1), 804–810 (2019)

    Google Scholar 

  62. Karballaeezadeh, N., et al.: Prediction of remaining service life of pavement using an optimized support vector machine (case study of Semnan-Firuzkuh road). Eng. Appl. Comput. Fluid Mech. 13(1), 188–198 (2019)

    Google Scholar 

  63. Menad, N.A., et al.: Modeling temperature dependency of oil - water relative permeability in thermal enhanced oil recovery processes using group method of data handling and gene expression programming. Eng. Appl. Comput. Fluid Mech. 13(1), 724–743 (2019)

    MathSciNet  Google Scholar 

  64. Mohammadzadeh, S., et al.: Prediction of compression index of fine-grained soils using a gene expression programming model. Infrastructures 4(2), 26 (2019)

    Article  Google Scholar 

  65. Wen, X.-L., Wang, H.-T., Wang, H.: Prediction model of flow boiling heat transfer for R407C inside horizontal smooth tubes based on RBF neural network. Procedia Eng. 31, 233–239 (2012)

    Article  Google Scholar 

  66. Jiang, H., et al.: Intelligent optimization models based on hard-ridge penalty and RBF for forecasting global solar radiation. Energy Convers. Manag. 95, 42–58 (2015)

    Article  Google Scholar 

  67. Riverol, C., Di Sanctis, C.: Improving adaptive-network-based fuzzy inference systems (ANFIS): a practical approach. Asian J. Inf. Technol. 4(12), 1208–1212 (2005)

    Google Scholar 

  68. Chaabene, M., Ammar, M.B.: Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems. Renew. Energy 33(7), 1435–1443 (2008)

    Article  Google Scholar 

  69. Ardabili, S.F., et al.: A novel enhanced exergy method in analysing HVAC system using soft computing approaches: a case study on mushroom growing hall. J. Build. Eng. (2017)

    Google Scholar 

  70. Ardabili, S., Mosavi, A., Mahmoudi, Mesri Gundoshmian, T., Nosratabadi, S., Varkonyi-Koczy, A.: Modelling temperature variation of mushroom growing hall using artificial neural networks, Preprints (2019)

    Google Scholar 

  71. Mesri Gundoshmian, T., Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Prediction of combine harvester performance using hybrid machine learning modeling and re-sponse surface methodology, Preprints (2019)

    Google Scholar 

  72. Ardabili, S., Mosavi, A., Varkonyi-Koczy, A., Systematic review of deep learning and machine learning models in biofuels research, Preprints (2019)

    Google Scholar 

  73. Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Advances in machine learning model-ing reviewing hybrid and ensemble methods, Preprints (2019)

    Google Scholar 

  74. Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Building Energy information: demand and consumption prediction with Machine Learning models for sustainable and smart cities, Preprints (2019)

    Google Scholar 

  75. Ardabili, S., Mosavi, A., Dehghani, M., Varkonyi-Koczy, A.: Deep learning and machine learning in hydrological processes climate change and earth systems a systematic review, Preprints (2019)

    Google Scholar 

  76. Mohammadzadeh, D., Karballaeezadeh, N., Mohemmi, M., Mosavi, A., Varkonyi-Koczy, A.: Urban Train Soil-Structure Interaction Modeling and Analysis, Preprints (2019)

    Google Scholar 

  77. Mosavi, A., Ardabili, S., Varkonyi-Koczy, A., List of deep learning models, Preprints (2019)

    Google Scholar 

  78. Nosratabadi, S., Mosavi, A., Keivani, R., Ardabili, S., Aram, F.: State of the art survey of deep learning and machine learning models for smart cities and urban sustainability, Preprints (2019)

    Google Scholar 

Download references

Acknowledgments

This publication has been supported by the Project: “Support of research and development activities of the J. Selye University in the field of Digital Slovakia and creative industry” of the Research & Innovation Operational Programme (ITMS code: NFP313010T504) co-funded by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Mosavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gundoshmian, T.M., Ardabili, S., Mosavi, A., Várkonyi-Kóczy, A.R. (2020). Prediction of Combine Harvester Performance Using Hybrid Machine Learning Modeling and Response Surface Methodology. In: Várkonyi-Kóczy, A. (eds) Engineering for Sustainable Future. INTER-ACADEMIA 2019. Lecture Notes in Networks and Systems, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-030-36841-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36841-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36840-1

  • Online ISBN: 978-3-030-36841-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics