Skip to main content

G-HAPNet: A Novel Structure for Single Image Super-Resolution

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1143))

Included in the following conference series:

  • 2259 Accesses

Abstract

Recent investigations on single image super-resolution (SISR) have progressed with the development of deep convolutional neural networks (DCNNs). However, increasingly complex network designs cause huge computational budgets. Therefore, a more efficient structure for SISR task is desirable. In this report, we propose a novel structure, called G-HAPNet. Specifically, the group-hierarchical atrous pyramid block (G-HAPB) is built to package as a general block for deeper network constitution. Firstly, the original features are expanded and grouped in channel. Then, a atrous pyramid is constructed to extract multi-scale features from corresponding channels. Besides, we introduce hierarchical grouping aggregation (HGA) which includes forward aggregation and backward aggregation by skip connections so that we can achieve hierarchical fusion and information guidance among multi-scale features. Extensive experiments demonstrate that with the same level depth and computational budgets, our proposed G-HAPNet has better performance than state-of-the-art methods on both synthetic datasets and real-world dataset, which indicates our G-HAPNet is a more efficient and practical structure for SISR.

This work was supported in part by the National Natural Science Foundation of China under Grants 61571382, 81671766, 61571005, 81671674, 61671309, 61971369 and U1605252, in part by the Fundamental Research Funds for the Central Universities under Grants 20720160075 and 20720180059, in part by the CCF-Tencent open fund, and the Natural Science Foundation of Fujian Province of China (No. 2017J01126).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  2. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  3. Duchon, C.E.: Lanczos filtering in one and two dimensions. J. Appl. Meteorol. 18(8), 1016–1022 (1979)

    Article  Google Scholar 

  4. Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2net: a new multi-scale backbone architecture. arXiv preprint arXiv:1904.01169 (2019)

  5. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1664–1673 (2018)

    Google Scholar 

  6. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  7. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  8. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  9. Sun, J., Xu, Z., Shum, H.Y.: Image super-resolution using gradient profile prior. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  10. Yu, J., et al.: Wide activation for efficient and accurate image super-resolution. arXiv preprint arXiv:1808.08718 (2018)

  11. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghao Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, Y., Zhuang, M., Cai, C., Huang, Y., Ding, X. (2019). G-HAPNet: A Novel Structure for Single Image Super-Resolution. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1143. Springer, Cham. https://doi.org/10.1007/978-3-030-36802-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36802-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36801-2

  • Online ISBN: 978-3-030-36802-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics