Skip to main content

High-Speed Synchronization of Pulse-Coupled Phase Oscillators on Multi-FPGA

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1143))

Included in the following conference series:

Abstract

This study proposes High-Speed Synchronization of Pulse-Coupled Phase Oscillators on multiple field-programmable-gate-array (FPGA). Winfree model is used for oscillators communication based and two FPGAs are connected by a gigabit transceiver (GTX). In order to verify the effect of communication delay and in-phase synchronization phenomenon between FPGAs, we implement various number of oscillators on the multi-FPGA platform. Four-oscillator network achieved first spike synchronization over two FPGAs within 12.47 \(\upmu \)s and datastream bitrate up tp 3.2 Gbps. We have successfully expanded the network from the previous study and verified that the 10 \(\times \) 10 pulse-coupled phase oscillators synchronized over two FPGAs via high-speed serial communication with a 0.1 \(\upmu \)s delay and the network reached a steady synchronization state after the spike-count reached 100 with a maximum frequency 298.014 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M.: Neuroscience-inspired artificial intelligence. Neuron 95(2), 245–258 (2017)

    Article  Google Scholar 

  2. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence, Springer, Heidelberg (1984). viii+ 156, 25 \(\times \) 17 cm, 9,480 (Springer Series in Synergetics, vol. 19), 40(10):817–818 (1985). https://doi.org/10.1007/978-3-642-69689-3

    Book  Google Scholar 

  3. Winfree, A.T.: The Geometry of Biological Time, vol. 12. Springer, New York (2001). https://doi.org/10.1007/978-1-4757-3484-3

    Book  MATH  Google Scholar 

  4. Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50(6), 1645–1662 (1990)

    Article  MathSciNet  Google Scholar 

  5. Kuramoto, Y.: Collective synchronization of pulse-coupled oscillators and excitable units. Physica D Nonlinear Phenomena 50(1), 15–30 (1991)

    Article  Google Scholar 

  6. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks, vol. 126. Springer, New York (1997). https://doi.org/10.1007/978-1-4612-1828-9

    Book  MATH  Google Scholar 

  7. Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2007)

    Google Scholar 

  8. Atuti, D., Kato, N., Nakada, K., Morie, T.: CMOS circuit implementation of a coupled phase oscillator system using pulse modulation approach. In: 2007 18th European Conference on Circuit Theory and Design, pp. 827–830. IEEE (2007)

    Google Scholar 

  9. Matsuzaka, K., Tohara, T., Nakada, K., Morie, T.: Analog CMOS circuit implementation of a pulse-coupled phase oscillator system and observation of synchronization phenomena. Nonlinear Theory Appl. IEICE 3(2), 180–190 (2012)

    Article  Google Scholar 

  10. Matsuzaka, K., Tanaka, H., Ohkubo, S., Morie, T.: VLSI implementation of coupled MRF model using pulse-coupled phase oscillators. Electron. Lett. 51(1), 46–48 (2014)

    Article  Google Scholar 

  11. Suedomi, Y., Tamukoh, H., Tanaka, M., Matsuzaka, K., Morie, T.: Parameterized digital hardware design of pulse-coupled phase oscillator model toward spike-based computing. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8228, pp. 17–24. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42051-1_3

    Chapter  Google Scholar 

  12. Suedomi, Y., Tamukoh, H., Matsuzaka, K., Tanaka, M., Morie, T.: Parameterized digital hardware design of pulse-coupled phase oscillator networks. Neurocomputing 165, 54–62 (2015)

    Article  Google Scholar 

  13. Pramanta, D., Morie, T., Tamukoh, H.: Implementation of multi-FPGA communication using pulse-coupled phase oscillators. In: Proceedings of 2017 International Conference on Artificial Life And Robotics (ICAROB2017), pp. 128–131 (2017)

    Article  Google Scholar 

  14. Li, J., et al.: A multidimensional configurable processor array-vocalise. IEICE Trans. Inf. Syst. 98(2), 313–324 (2015)

    Article  Google Scholar 

  15. Xilinx Inc.: Aurora 8B/10B Protocol Specification, howpublished. https://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b_protocol_spec_sp002.pdf. Accessed 28 Jun 2019

  16. Pramanta, D., Morie, T., Tamukoh, H.: Synchronization of pulse-coupled phase oscillators over multi-FPGA communication links. J. Robot. Networking Artif. Life 4(1), 91–96 (2017)

    Article  Google Scholar 

  17. Athavale, A., Christensen, C.: High-speed serial i/o made simple. Xilinx inc., April 2005

    Google Scholar 

  18. RGB color gradient maker. http://www.perbang.dk/rgbgradient/. Accessed 28 Jun 2019

Download references

Acknowledgment

This research is supported by JSPS KAKENHI grant number 17H01798.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinda Pramanta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pramanta, D., Tamukoh, H. (2019). High-Speed Synchronization of Pulse-Coupled Phase Oscillators on Multi-FPGA. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1143. Springer, Cham. https://doi.org/10.1007/978-3-030-36802-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36802-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36801-2

  • Online ISBN: 978-3-030-36802-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics