Skip to main content

3D Objects Learning and Recognition Using Boosted-SVM Algorithm

  • Conference paper
  • First Online:
Innovation in Information Systems and Technologies to Support Learning Research (EMENA-ISTL 2019)

Abstract

3D object recognition is one of the most challenging tasks facing artificial systems. Thus, the ability to detect and localize the regions of interest is necessary to provide an enhanced searching and visualisation beyond a simple high-level categorisation. Recently, many approaches based on 3D objects learning have been proposed, they rely on learning objects characteristics from fully labelled 3D objects. However, such data training steps are difficult to be acquired at scale. In this paper we explore machine learning techniques to recognize objects, based on local parts, from a data base. The idea behind our approach is to compute and label the quantized local descriptor around 3D interest points using both intuitive geometric and spatial properties and an effective supervised classifier, named respectively Tri Spin Image and boosted-SVM classifier. First, we extract the salient points using Harris3D then the significant and robust feature vectors representing the keypoints are computed then quantized using bag of features. Second, we use these vectors to train a boosted-SVM classifier. The performance of the proposed method is evaluated and proves encouraging results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Comput. Graph. Forum 30(6), 1681–1707 (2011)

    Article  Google Scholar 

  2. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31(4), 30 (2012). (Proc. SIGGRAPH)

    Article  Google Scholar 

  3. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J.: 3D object recognition in cluttered scenes with local surface features: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2270–2287 (2014)

    Article  Google Scholar 

  4. Corman, É., Ovsjanikov, M., Chambolle, A.: Supervised descriptor learning for non-rigid shape matching. In: European Conference on Computer Vision (ECCV), pp. 283–298. Springer, Cham (2014)

    Chapter  Google Scholar 

  5. Cosmo, L., Rodola, E., Masci, J., Torsello, A., Bronstein, M.M.: Matching deformable objects in clutter. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 1–10. IEEE (2016)

    Google Scholar 

  6. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30(1), 1 (2011)

    Article  Google Scholar 

  7. Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoué, G., Van Nguyen, H., Ohbuchi, R., et al.: A comparison of methods for non-rigid 3D shape retrieval. Pattern Recogn. 46(1), 449–461 (2013)

    Article  Google Scholar 

  8. Shah, S.A.A., Bennamoun, M., Boussaid, F.: A novel 3D vorticity based approach for automatic registration of low resolution range images. Pattern Recogn. 48(9), 2859–2871 (2015)

    Article  Google Scholar 

  9. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell 21(5), 433–449 (1999)

    Article  Google Scholar 

  10. Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)

    Article  Google Scholar 

  11. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multiscale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009). (Proc. SGP)

    Article  Google Scholar 

  12. Guo, Y., Sohel, F.A., Bennamoun, M., Lu, M., Wan, J.: TriSI: a distinctive local surface descriptor for 3D modeling and object recognition. In: GRAPP/IVAPP, pp. 86–93 (2013)

    Google Scholar 

  13. Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan, J.: Rotational projection statistics for 3D local surface description and object recognition. Int. J. Comput. Vis. 105(1), 63–86 (2013)

    Article  MathSciNet  Google Scholar 

  14. Yang, J., Cao, Z., Zhang, Q.: A fast and robust local descriptor for 3D point cloud registration. Inf. Sci. 346–347, 163–179 (2016)

    Article  Google Scholar 

  15. Salti, S., Tombari, F., Di Stefano, L.: SHOT: unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 125, 251–264 (2014)

    Article  Google Scholar 

  16. Yang, J., Zhang, Q., Xiao, Y., Cao, Z.: TOLDI: an effective and robust approach for 3D local shape description. Pattern Recogn. 65, 175–187 (2017)

    Article  Google Scholar 

  17. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., Kwok, N.M.: A comprehensive per-formance evaluation of 3D local feature descriptors. Int. J. Comput. Vis. 116(1), 66–89 (2016)

    Article  MathSciNet  Google Scholar 

  18. Harris, C.G., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, Manchester, Britain, pp. 10–5244 (1988)

    Google Scholar 

  19. Godil, A., Wagan, A.I.: Salient local 3D features for 3D shape retrieval. In: Three-Dimensional Imaging, Interaction, and Measurement. International Society for Optics and Photonics, vol. 7864, p. 78640S (2011)

    Google Scholar 

  20. Sipiran, I., Bustos, B.: Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis. Comput. 11(27), 963 (2011)

    Article  Google Scholar 

  21. Dutagaci, H., Cheung, C.P., Godil, A.: Evaluation of 3D interest point detection techniques via human-generated ground truth. Vis. Comput. 9(28), 901–917 (2012)

    Article  Google Scholar 

  22. Pratikakis, I., Spagnuolo, M., Theoharis, T., Veltkamp, R.: A robust 3D interest points detector based on harris operator. In: Eurographics workshop on 3D object retrieval, vol. 5 (2010)

    Google Scholar 

  23. Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis. 89(2–3), 348–361 (2010)

    Article  Google Scholar 

  24. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: 10th European Conference on Machine Learning, ECML 1998, pp. 137–142 (1998)

    Chapter  Google Scholar 

  25. Zaharia, T., Preteux, F.: Shape-based retrieval of 3D mesh models. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME 2002), Lausanne, Switzerland, pp. 437–440 (2002)

    Google Scholar 

  26. Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image Vis. Comput. 8(10), 557–564 (1992)

    Article  Google Scholar 

  27. Lodhi, R.S., Shrivastava, S.K.: Evaluation of support vector machines using kernels for object detection in images. Int. J. Eng. Res. Appl. (IJERA) 2, 269–273 (2012)

    Google Scholar 

  28. Scholkopf, B., Sung, K.K., Burges, C.J., Girosi, F., Niyogi, P., Poggio, T., Vapnik, V.: Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans. Signal Process. 45(11), 2758–2765 (1997)

    Article  Google Scholar 

  29. Herouane, O., Moumoun, L., Gadi, T., Chahhou, M.: A hybrid boosted-SVM classifier for recognizing parts of 3D objects. Int. J. Intell. Eng. Syst. 2(11), 102–110 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youness Abouqora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abouqora, Y., Herouane, O., Moumoun, L., Gadi, T. (2020). 3D Objects Learning and Recognition Using Boosted-SVM Algorithm. In: Serrhini, M., Silva, C., Aljahdali, S. (eds) Innovation in Information Systems and Technologies to Support Learning Research. EMENA-ISTL 2019. Learning and Analytics in Intelligent Systems, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-36778-7_47

Download citation

Publish with us

Policies and ethics