Skip to main content

Deep Learning for Combo Object Detection

  • Conference paper
  • First Online:
Book cover Neural Information Processing (ICONIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11953))

Included in the following conference series:

  • 2723 Accesses

Abstract

Convolutional neural networks (CNNs) have become the most vigorous technique for a variety of different tasks in computer vision, due to their proficiency in automatically learning high-level visual representations for images. In this paper, we investigate the effect of deep neural networks on the accuracy in combo object detection setting. The insufficiency of labeled data, coupled with the uncertainty of spacial distribution and dynamic changes in luminance, creates situations where combo object detection is far more challenging. Using transfer learning, we present a system for combo object detection based on a deep CNN called ComboNN. The proposed ComboNN is pre-trained on a huge auxiliary dataset ImageNet and fine-tuned on our small dataset. The use of data augmentation and regularization technique significantly reduces overfitting and improves the robustness of the ComboNN. Experimental results demonstrate that our system is capable of making reliable prediction on combo object detection in the real-world images, and achieves much better accuracy than the state-of-the-art CNNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  2. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: ImageNet: a large-scale hierarchical image database. In: Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  3. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  4. Deng, J., Berg, A., Satheesh, S., Su, H., Khosla, A., Li, F: ImageNet large scale visual recognition competition 2012 (ILSVRC2012). In: net.org/challenges/LSVRC (2012)

    Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587. IEEE (2014)

    Google Scholar 

  6. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In Advances in Neural Information Processing Systems, pp. 487–495 (2014)

    Google Scholar 

  7. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  8. Bar, Y., Diamant, I., Wolf, L., Lieberman, S., Konen, E., Greenspan, H.: Chest pathology detection using deep learning with non-medical training. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 294–297. IEEE (2015)

    Google Scholar 

  9. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: Computer Vision and Pattern Recognition (CVPR), pp. 3642–3649 (2012)

    Google Scholar 

  10. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Pellegrini, S., Ess, A., Schindler, K., Van, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: IEEE International Conference on Computer Vision (ICCV), pp. 261–268 (2009)

    Google Scholar 

  12. Baumgartner, T., Mitzel, D., Leibe, B.: Tracking people and their objects. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3658–3665 (2013)

    Google Scholar 

  13. Yamaguchi, K., Berg, A., Ortiz, L., Berg, T.: Who are you with and where are you going. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1345–1352 (2011)

    Google Scholar 

  14. Pellegrini, S., Ess, A., Van Gool, L.: Improving data association by joint modeling of pedestrian trajectories and groupings. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 452–465. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_33

    Chapter  Google Scholar 

  15. Zhao, J., Pang, S., Hartill, B., Sarrafzadeh, A.: A combo object model for maritime boat ramps traffic monitoring. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 623–630. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46687-3_69

    Chapter  Google Scholar 

  16. Everingham, M., Eslami, A., Van, L., Williams, K., Winn, J., Zisserman, A.: The Pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)

    Article  Google Scholar 

  17. Agrawal, P., Girshick, R., Malik, J.: Analyzing the performance of multilayer neural networks for object recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 329–344. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_22

    Chapter  Google Scholar 

  18. Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features on-the-shelf: an astounding baseline for recognition. In: Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 512–519 (2014)

    Google Scholar 

  19. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M.F., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229 (2013)

  20. Van, G., Setio, A., Jacobs, C., Ciompi, F.: On-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In: Biomedical Imaging (ISBI), pp. 286–289 (2015)

    Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  22. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  23. Chollet, F., et al.: Keras. https://keras.io (2015)

  24. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT, pp. 177–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

    Chapter  Google Scholar 

  25. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp. 1139–1147 (2013)

    Google Scholar 

  26. Miller, G.: WordNet: a lexical database for english. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  27. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  29. Chollet, F.: Xception: deep learning with depthwise separable convolutions. arXiv preprint (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J., Ardekani, I.T., Pang, S. (2019). Deep Learning for Combo Object Detection. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11953. Springer, Cham. https://doi.org/10.1007/978-3-030-36708-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36708-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36707-7

  • Online ISBN: 978-3-030-36708-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics