Skip to main content

Modeling Airport Congestion Contagion by SIS Epidemic Spreading on Airline Networks

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 881))

Included in the following conference series:

Abstract

We model airport congestion contagion as an SIS spreading process on an airport transportation network to explain airport vulnerability. The vulnerability of each airport is derived from the US Airport Network data as its congestion probability. We construct three types of airline networks to capture diverse features such as the frequency and duration of flights. The weight of each link augments its infection rate in SIS spreading process. The nodal infection probability in the meta-stable state is used as estimate the vulnerability of the corresponding airport. We illustrate that our model could reasonably capture the distribution of nodal vulnerability and rank airports in vulnerability evidently better than the random ranking, but not significantly better than using nodal network properties. Such congestion contagion model not only allows the identification of vulnerable airports but also opens the possibility to reduce global congestion via congestion reduction in few airports.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Except that the recognition rate drops dramatically if the infection rate is low when most nodes have an infection probability close to zero.

References

  1. Kiss, I.Z., Miller, J.C., Simon, P.L.: Mathematics of Epidemics on Networks, vol. 598. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50806-1

    Book  MATH  Google Scholar 

  2. Zanin, M., Lillo, F.: Modelling the air transport with complex networks: a short review. Eur. Phys. J. Spec. Top. 215(1), 5–21 (2013). https://doi.org/10.1140/epjst/e2013-01711-9

    Article  Google Scholar 

  3. Baspinar, B., Koyuncu, E.: A data-driven air transportation delay propagation model using epidemic process models. J. Aero. Eng. (2016). https://doi.org/10.1155/2016/4836260

    Article  Google Scholar 

  4. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015)

    Article  MathSciNet  Google Scholar 

  5. Van Mieghem, P., Omic, J., Kooij, R.: Virus spread in networks. IEEE TNET 17(1), 1–14 (2009). https://doi.org/10.1109/TNET.2008.925623

    Article  Google Scholar 

  6. Li, D., Qin, P., Wang, H., Liu, C., Jiang, Y.: Epidemics on interconnected lattices. EPL 105(6), 68004 (2014). https://doi.org/10.1209/0295-5075/105/68004

    Article  Google Scholar 

  7. Qu, B., Wang, H.: SIS epidemic spreading with correlated heterogeneous infection rates. J. Phys. A 472, 13–24 (2017). https://doi.org/10.1016/j.physa.2016.12.077

    Article  MathSciNet  MATH  Google Scholar 

  8. Qu, B., Wang, H.: SIS epidemic spreading with heterogeneous infection rates. IEEE TNSE 4(3), 177–186 (2017). https://doi.org/10.1109/TNSE.2017.2709786

    Article  MATH  Google Scholar 

  9. Li, C., van de Bovenkamp, R., Van Mieghem, P.: Susceptible-infected-susceptible model: a comparison of N-intertwined and heterogeneous mean-field approximations. Phys. Rev. E 86(2), 026116 (2012). https://doi.org/10.1103/PhysRevE.86.026116

    Article  Google Scholar 

  10. Van Mieghem, P.: The N-intertwined SIS epidemic network model. Computing 93(2–4), 147–169 (2011). https://doi.org/10.1007/s00607-011-0155-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, C., Wang, H., Van Mieghem, P.: Epidemic threshold in directed networks. Phys. Rev. E 88(6), 062802 (2013). https://doi.org/10.1103/PhysRevE.88.062802

    Article  Google Scholar 

  12. Yang, Z., Zhou, T.: Epidemic spreading in weighted networks: an edge-based mean-field solution. Phys. Rev. E 85(5), 056106 (2012). https://doi.org/10.1103/PhysRevE.85.056106

    Article  Google Scholar 

  13. Lu, D., Yang, S., Zhang, J., Wang, H., Li, D.: Resilience of epidemics for SIS model on networks. Chaos Interdiscip. J. Nonlinear Sci. 27(8), 083105 (2017). https://doi.org/10.1063/1.4997177

    Article  MathSciNet  Google Scholar 

  14. Qu, B., Li, C., Van Mieghem, P., Wang, H.: Ranking of nodal infection probability in susceptible-infected-susceptible epidemic. Sci. Rep. 7(1), 9233 (2017). https://doi.org/10.1038/s41598-017-08611-9

    Article  Google Scholar 

  15. Barat, A., Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A.: The archiecture of complex network weights. Proc. Natl. Acad. Sci. U.S.A. 101(11), 3747–3752 (2014). https://doi.org/10.1073/pnas.0400087101

    Article  Google Scholar 

  16. Guimerà, R., Mossa, S., Turtschi, A., Amaral, L.: The worldwide air transportation network - anomalous centrality, community structure, and cities’ global roles. Proc. Natl. Acad. Sci. U.S.A. 102(22), 7794–7799 (2005). https://doi.org/10.1073/pnas.0407994102

    Article  MathSciNet  MATH  Google Scholar 

  17. Reggiani, A., Signoretti, S., Nijkamp, P., Cento, A.: Network measures in civil air transport - a case study of Lufthansa. In: Lecture Notes in Economics and Mathematical Systems, vol. 613, pp. 257–282 (2009). https://doi.org/10.1007/978-3-540-68409-1-14

  18. Han, D.D., Qian, J.H., Liu, J.G.: Network topology and correlation features affiliated with European airline companies. Phys. A 388(1), 71–81 (2009). https://doi.org/10.1016/j.physa.2008.09.021

    Article  Google Scholar 

  19. Fleurquin, P., Ramasco, J.J., Eguiluz, V.M.: Systemic delay propagation in the US airport network. Sci. Rep. 3, 1159 (2013). https://doi.org/10.1038/srep01159

    Article  Google Scholar 

  20. Ciruelos, C., Arranz, A., Etxebarria, I., Peces, S.: Modelling delay propagation trees for scheduled flights. In: USA/Europe Air Traffic Management Research and Development Seminar, vol. 11 (2015)

    Google Scholar 

  21. Baspinar, B., Koyuncu, E.: A data-driven air transportation delay propagation model using epidemic process models. Int. J. Aerosp. Eng. (2016). https://doi.org/10.1155/2016/4836260

    Article  Google Scholar 

  22. Chi, L.P., Cai, X.: Structural changes caused by error and attack tolerance in US airport network. Int. J. Mod. Phys. B 18, 2394–2400 (2004). https://doi.org/10.1142/S0217979204025427

    Article  Google Scholar 

  23. Wilkinson, S.M., Dunn, S., Ma, S.: The vulnerability of the European air traffic network to spatial hazards. Nat. Hazards 60(3), 1027–1036 (2012). https://doi.org/10.1007/s11069-011-9885-6

    Article  Google Scholar 

  24. Lacasa, L., Cea, M., Zanin, M.: Jamming transition in air transportation networks. J. Phys. A 388(18), 3948–3954 (2009). https://doi.org/10.1016/j.physa.2009.06.005

    Article  Google Scholar 

  25. United States Bureau of Transportation Statistics. http://www.transtats.bts.gov

  26. Wang, H., Li, Q., D’Agostino, G., Havlin, S., Stanley, H.E., Van Mieghem, P.: Effect of the interconnected network structure on the epidemic threshold. Phys. Rev. E 88, 022801 (2013)

    Article  Google Scholar 

  27. Gang, Y., Tao, Z., Jie, W., Zhong-Qian, F., Bing-Hong, W.: Epidemic spread in weighted scale-free networks. Chin. Phys. Lett. 22(2), 510 (2005). https://doi.org/10.1088/0256-307x/22/2/068

    Article  Google Scholar 

  28. Odoni, A., De Neufville, R.: Airport Systems: Planning, Design, and Management. McGraw-Hill Professional, New York (2003)

    Google Scholar 

  29. Dunn, S., Wilkinson, S.M.: Increasing the resilience of air traffic networks using a network graph theory approach. J. Trans. Res. E 90, 39–50 (2016). https://doi.org/10.1016/j.tre.2015.09.011

    Article  Google Scholar 

  30. Ciruelos, C., Arranz, A., Etxebarria, I., Peces, S., Campanelli, B., Fleurquin, P., Ramasco, J.J.: Modelling delay propagation trees for scheduled flights. In: Proceedings of the 11th USA/EUROPE Air Traffic Management R&D Seminar, Lisbon, Portugal, pp. 23-26 (2015)

    Google Scholar 

  31. Li, C., Li, Q., Van Mieghem, P., Stanley, H.E., Wang, H.: Correlation between centrality metrics and their application to the opinion model. Eur. Phys. J. B 88, 65 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work is supported by Netherlands Organisation for Scientific Research NWO (TOP Grant no. 612.001.802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Köstler, K., Gobardhan, R., Ceria, A., Wang, H. (2020). Modeling Airport Congestion Contagion by SIS Epidemic Spreading on Airline Networks. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_32

Download citation

Publish with us

Policies and ethics