Skip to main content

Eva: Attribute-Aware Network Segmentation

Part of the Studies in Computational Intelligence book series (SCI,volume 881)

Abstract

Identifying topologically well-defined communities that are also homogeneous w.r.t. attributes carried by the nodes that compose them is a challenging social network analysis task. We address such a problem by introducing Eva, a bottom-up low complexity algorithm designed to identify network hidden mesoscale topologies by optimizing structural and attribute-homophilic clustering criteria. We evaluate the proposed approach on heterogeneous real-world labeled network datasets, such as co-citation, linguistic, and social networks, and compare it with state-of-art community discovery competitors. Experimental results underline that Eva ensures that network nodes are grouped into communities according to their attribute similarity without considerably degrading partition modularity, both in single and multi node-attribute scenarios.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-36687-2_12
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-36687-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    Python code available at: https://github.com/GiulioRossetti/EVA.

References

  1. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  2. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

    CrossRef  Google Scholar 

  3. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet portals with machine learning. Inf. Retrieval 3, 127–163 (2000)

    CrossRef  Google Scholar 

  4. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In: Advances in Neural Information Processing Systems, pp. 539–547 (2012)

    Google Scholar 

  5. Neville, J., Jensen, D., Friedland, L., Hay, M.: Learning relational probability trees. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 625–630. ACM (2003)

    Google Scholar 

  6. Trask, A., Michalak, P., Liu, J.: sense2vec - a fast and accurate method for word sense disambiguation in neural word embeddings. CoRR, vol. abs/1511.06388 (2015)

    Google Scholar 

  7. Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of Facebook networks. CoRR, vol. abs/1102.2166 (2011)

    Google Scholar 

  8. Traag, V.A., Waltman, L., van Eck, N.J.: From louvain to leiden: guaranteeing well-connected communities. CoRR, vol. abs/1810.08473 (2018)

    Google Scholar 

  9. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007)

    CrossRef  Google Scholar 

  10. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)

    CrossRef  Google Scholar 

  11. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007)

    CrossRef  Google Scholar 

  12. Dang, T.A., Viennet, E.: Community detection based on structural andattribute similarities. In: International Conference on Digital Society (ICDS) (2012)

    Google Scholar 

  13. Falih, I., Grozavu, N., Kanawati, R., Bennani, Y.: Community detection in attributed network. In: Companion Proceedings of the The Web Conference, pp. 1299–1306 (2018)

    Google Scholar 

  14. Neville, J., Adler, M., Jensen, D.: Clustering relational data using attribute and link information. In: 18th International Joint Conference on Artificial Intelligence, pp. 9–15 (2003)

    Google Scholar 

  15. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. Proc. VLDB Endow. 2, 718–729 (2009)

    CrossRef  Google Scholar 

  16. Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-Louvain: an attributed graph clustering method. In: Advances in Intelligent Data Analysis XIV, pp. 181–192. Springer, Cham (2015)

    CrossRef  Google Scholar 

  17. Falih, I., Grozavu, N., Kanawati, R., Bennani, Y.: ANCA : attributed network clustering algorithm. In: Complex Networks and Their Applications, vol. VI, pp. 241–252. Springer, Cham (2018)

    Google Scholar 

  18. Elhadi, H., Agam, G.: Structure and attributes community detection: comparative analysis of composite, ensemble and selection methods. In: Proceedings of the 7th Workshop on Social Network Mining and Analysis, SNAKDD 2013, pp. 10:1–10:7. ACM (2013)

    Google Scholar 

  19. Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node attributes. In: 2013 IEEE 13th International Conference on Data Mining, pp. 1151–1156, December 2013

    Google Scholar 

  20. Rossetti, G., Milli, L., Cazabet, R.: CDLIB: a python library to extract, compare and evaluate communities from complex networks. Appl. Netw. Sci. 4(1), 52 (2019)

    CrossRef  Google Scholar 

Download references

Acknowledgment

This work is partially supported by the European Community’s H2020 Program under the funding scheme “INFRAIA-1-2014-2015: Research Infrastructures” grant agreement 654024, http://www.sobigdata.eu, “SoBigData”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Rossetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Citraro, S., Rossetti, G. (2020). Eva: Attribute-Aware Network Segmentation. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_12

Download citation