Skip to main content

The Densest k Subgraph Problem in b-Outerplanar Graphs

  • Conference paper
  • First Online:
  • 3112 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 881))

Abstract

We give an exact \(O(nk^2)\) algorithm for finding the densest k subgraph in outerplanar graphs. We extend this to an exact \(O(nk^2 8^b)\) algorithm for finding the densest k subgraph in b-outerplanar graphs. Often, when there is an exact polynomial time algorithm for a problem on b-outerplanar graphs, this algorithm can be extended to a polynomial time approximation scheme (PTAS) on planar graphs using Baker’s technique. We hypothesize that this is not possible for the densest k subgraph problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Angel, A., Sarkas, N., Koudas, N., Srivastava, D.: Dense subgraph maintenance under streaming edge weight updates for real-time story identification. Proc. VLDB Endow. 5(6), 574–585 (2012)

    Article  Google Scholar 

  2. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 153–180 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T.: Exact and approximation algorithms for densest k-subgraph. In: WALCOM: Algorithms and Computation, pp. 114–125. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web graph compression with communities. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, WSDM ’08, pp. 95–106. ACM, New York, NY, USA (2008)

    Google Scholar 

  5. Chen, J., Saad, Y.: Dense subgraph extraction with application to community detection. IEEE Trans. Knowl. Data Eng. 24(7), 1216–1230 (2010)

    Article  Google Scholar 

  6. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discret. Appl. Math. 9(1), 27–39 (1984)

    Article  MathSciNet  Google Scholar 

  7. Du, X., Jin, R., Ding, L., Lee, V.E., Thornton Jr, J.H.: Migration motif: a spatial - temporal pattern mining approach for financial markets. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, pp. 1135–1144. ACM, New York, NY, USA (2009)

    Google Scholar 

  8. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29, 2001 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Fratkin, E., Naughton, B.T., Brutlag, D.L., Batzoglou, S.: MotifCut: regulatory motifs finding with maximum density subgraphs. Bioinformatics 22, 150–157 (2006)

    Article  Google Scholar 

  10. Gibson, D., Kleinberg, J., Raghavan, P.: Inferring web communities from link topology. In: Proceedings of the Ninth ACM Conference on Hypertext and Hypermedia : Links, Objects, Time and Space—Structure in Hypermedia Systems: Links, Objects, Time and Space—Structure in Hypermedia Systems, HYPERTEXT ’98, pp. 225–234. ACM, New York, NY, USA (1998)

    Google Scholar 

  11. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive graphs. In: Proceedings of the 31st International Conference on Very Large Data Bases, VLDB ’05, pp. 721–732. VLDB Endowment (2005)

    Google Scholar 

  12. Goldberg, A.V.: Finding a maximum density subgraph. Technical report, University of California at Berkeley, Berkeley, CA, USA (1984)

    Google Scholar 

  13. Mark Keil, J., Brecht, T.B.: The complexity of clustering in planar graphs. J. Comb. Math. Comb. Comput. 9, 155–159 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Langston, M.A., Lin, L., Peng, X., Baldwin, N.E., Symons, C.T., Zhang, B., Snoddy, J.R.: A combinatorial approach to the analysis of differential gene expression data: the use of graph algorithms for disease prediction and screening. In: Methods of Microarray Data Analysis IV, pp. 223–238. Springer (2005)

    Google Scholar 

  15. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to Samuel Chase for his collaboration on our initial explorations of finding a PTAS for the densest k subgraph problem. We would like to thank our reviewer who pointed us to previous work on this problem [3].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa Migler .

Editor information

Editors and Affiliations

A Pseudocode Selections

A Pseudocode Selections

Fig. 6.
figure 6

The merge procedure.

Fig. 7.
figure 7

The extend procedure.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gonzales, S., Migler, T. (2020). The Densest k Subgraph Problem in b-Outerplanar Graphs. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_10

Download citation

Publish with us

Policies and ethics