Skip to main content

LinkAUC: Unsupervised Evaluation of Multiple Network Node Ranks Using Link Prediction

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Abstract

An emerging problem in network analysis is ranking network nodes based on their relevance to metadata groups that share attributes of interest, for example in the context of recommender systems or node discovery services. For this task, it is important to evaluate ranking algorithms and parameters and select the ones most suited to each network. Unfortunately, large real-world networks often comprise sparsely labelled nodes that hinder supervised evaluation, whereas unsupervised measures of community quality, such as density and conductance, favor structural characteristics that may not be indicative of metadata group quality. In this work, we introduce LinkAUC, a new unsupervised approach that evaluates network node ranks of multiple metadata groups by measuring how well they predict network edges. We explain that this accounts for relation knowledge encapsulated in known members of metadata groups and show that it enriches density-based evaluation. Experiments on one synthetic and two real-world networks indicate that LinkAUC agrees with AUC and NDCG for comparing ranking algorithms more than other unsupervised measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://snap.stanford.edu/data/.

  2. 2.

    Cosine similarity would arise by a fixed-flow assumption of the ranking algorithm that performs row-wise normalization of R before the dot product.

  3. 3.

    https://snap.stanford.edu/data/amazon-meta.html.

  4. 4.

    DBLP-Citation-network V4 from https://aminer.org/citation.

References

  1. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)

    Article  MathSciNet  Google Scholar 

  2. Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th International Conference on World Wide Web, pp. 631–640. ACM (2010)

    Google Scholar 

  3. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. (CSUR) 45(4), 43 (2013)

    Article  Google Scholar 

  4. Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detection in social media. Data Min. Knowl. Discov. 24(3), 515–554 (2012)

    Article  Google Scholar 

  5. Hric, D., Darst, R.K., Fortunato, S.: Community detection in networks: structural communities versus ground truth. Phys. Rev. E 90(6), 062805 (2014)

    Article  Google Scholar 

  6. Hric, D., Peixoto, T.P., Fortunato, S.: Network structure, metadata, and the prediction of missing nodes and annotations. Phys. Rev. X 6(3), 031038 (2016)

    Google Scholar 

  7. Peel, L., Larremore, D.B., Clauset, A.: The ground truth about metadata and community detection in networks. Sci. Adv. 3(5), e1602548 (2017)

    Article  Google Scholar 

  8. Perer, A., Shneiderman, B.: Balancing systematic and flexible exploration of social networks. IEEE Trans. Visual Comput. Graphics 12(5), 693–700 (2006)

    Article  Google Scholar 

  9. De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S., Arenas, A.: Ranking in interconnected multilayer networks reveals versatile nodes. Nat. Commun. 6, 6868 (2015)

    Article  Google Scholar 

  10. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

    Article  MathSciNet  Google Scholar 

  11. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033015 (2009)

    Article  Google Scholar 

  12. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors. In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 475–486. IEEE (2006)

    Google Scholar 

  13. Whang, J.J., Gleich, D.F., Dhillon, I.S.: Overlapping community detection using neighborhood-inflated seed expansion. IEEE Trans. Knowl. Data Eng. 28(5), 1272–1284 (2016)

    Article  Google Scholar 

  14. Hsu, C.-C., Lai, Y.-A., Chen, W.-H., Feng, M.-H., Lin, S.-D.: Unsupervised ranking using graph structures and node attributes. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 771–779. ACM (2017)

    Google Scholar 

  15. Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Recommender Systems Handbook, pp. 257–297. Springer (2011)

    Google Scholar 

  16. Wang, Y., Wang, L., Li, Y., He, D., Chen, W., Liu, T.-Y.: A theoretical analysis of NDCG ranking measures. In: Proceedings of the 26th Annual Conference on Learning Theory (COLT 2013), vol. 8, p. 6 (2013)

    Google Scholar 

  17. Isinkaye, F., Folajimi, Y., Ojokoh, B.: Recommendation systems: principles, methods and evaluation. Egypt. Inform. J. 16(3), 261–273 (2015)

    Article  Google Scholar 

  18. Kowalik, Ł.: Approximation scheme for lowest outdegree orientation and graph density measures. In: International Symposium on Algorithms and Computation, pp. 557–566. Springer (2006)

    Google Scholar 

  19. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  20. Chalupa, D.: A memetic algorithm for the minimum conductance graph partitioning problem, arXiv preprint arXiv:1704.02854 (2017)

  21. Jeub, L.G., Balachandran, P., Porter, M.A., Mucha, P.J., Mahoney, M.W.: Think locally, act locally: detection of small, medium-sized, and large communities in large networks. Phys. Rev. E 91(1), 012821 (2015)

    Article  Google Scholar 

  22. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27(1), 415–444 (2001)

    Article  Google Scholar 

  23. Duan, L., Ma, S., Aggarwal, C., Ma, T., Huai, J.: An ensemble approach to link prediction. IEEE Trans. Knowl. Data Eng. 29(11), 2402–2416 (2017)

    Article  Google Scholar 

  24. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Recommender Systems Handbook, pp. 77–118. Springer (2015)

    Google Scholar 

  25. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  26. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A 390(6), 1150–1170 (2011)

    Article  Google Scholar 

  27. Ortega, A., Frossard, P., Kovačević, J., Moura, J.M., Vandergheynst, P.: Graph signal processing: overview, challenges, and applications. Proc. IEEE 106(5), 808–828 (2018)

    Article  Google Scholar 

  28. Martínez, V., Berzal, F., Cubero, J.-C.: A survey of link prediction in complex networks. ACM Comput. Surv. (CSUR) 49(4), 69 (2017)

    Google Scholar 

  29. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)

    Article  Google Scholar 

  30. Mason, S.J., Graham, N.E.: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation. Q. J. R. Meteorol. Soc. 128(584), 2145–2166 (2002)

    Article  Google Scholar 

  31. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)

    Article  Google Scholar 

  32. Görke, R., Kappes, A., Wagner, D.: Experiments on density-constrained graph clustering. J. Exp. Algorithmics (JEA) 19, 3–3 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Netw. 5(2), 109–137 (1983)

    Article  MathSciNet  Google Scholar 

  34. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans. Web (TWEB) 1(1), 5 (2007)

    Article  Google Scholar 

  35. Rohe, K., Chatterjee, S., Yu, B., et al.: Spectral clustering and the high-dimensional stochastic blockmodel. Ann. Stat. 39(4), 1878–1915 (2011)

    Article  MathSciNet  Google Scholar 

  36. Abbe, E., Bandeira, A.S., Hall, G.: Exact recovery in the stochastic block model. IEEE Trans. Inf. Theory 62(1), 471–487 (2016)

    Article  MathSciNet  Google Scholar 

  37. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998. ACM (2008)

    Google Scholar 

  38. Lofgren, P., Banerjee, S., Goel, A.: Personalized pagerank estimation and search: a bidirectional approach. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, pp. 163–172. ACM (2016)

    Google Scholar 

  39. Krasanakis, E., Schinas, E., Papadopoulos, S., Kompatsiaris, Y., Symeonidis, A.: Boosted seed oversampling for local community ranking. Inf. Process. Manag. 102053 (2019, in press). https://service.elsevier.com/app/answers/detail/a_id/11241/supporthub/scopus/

  40. Kloster, K., Gleich, D.F.: Heat kernel based community detection. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1386–1395. ACM (2014)

    Google Scholar 

  41. Andersen, R., Chung, F., Lang, K.: Local partitioning for directed graphs using pagerank. Internet Math. 5(1–2), 3–22 (2008)

    Article  MathSciNet  Google Scholar 

  42. Borgs, C., Chayes, J., Mahdian, M., Saberi, A.: Exploring the community structure of newsgroups. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 783–787. ACM (2004)

    Google Scholar 

  43. Gleich, D., Kloster, K.: Seeded pagerank solution paths. Eur. J. Appl. Math. 27(6), 812–845 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the European Commission under contract numbers H2020-761634 FuturePulse and H2020-825585 HELIOS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Krasanakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krasanakis, E., Papadopoulos, S., Kompatsiaris, Y. (2020). LinkAUC: Unsupervised Evaluation of Multiple Network Node Ranks Using Link Prediction. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_1

Download citation

Publish with us

Policies and ethics