Skip to main content

Network Influence Based Classification and Comparison of Neurological Conditions

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 882))

Included in the following conference series:

Abstract

Variations in the influence of brain regions are used to classify neurological conditions by identifying eigenvector-based communities in connectivity matrices, generated from resting state functional magnetic resonance imaging scans. These communities capture the network influence of each brain region, revealing that the subjects with Alzheimer’s disease (AD) have a significantly lower degree of variation in their most influential brain regions when compared with healthy control (HC) and amnestic mild cognitive impairment (aMCI) subjects. Classification of subjects based on their pattern of influential regions is demonstrated with neural networks identifying HC, aMCI and AD subjects. The difference between these conditions are investigated by altering brain region influence so that a neural network changes a subject’s classification. This conversion is performed on healthy subjects changing to aMCI or AD, and for aMCI subjects changing to AD. The results highlight potential compensatory mechanisms that increase or maintain functional connectivity in certain regions for those with aMCI, such as in the right parahippocampal gyrus and regions in the default mode network, but these same regions experience significant decline in those that convert from aMCI to AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawe, B., Procter, A., Philpot, M.: Concepts of mild memory impairment in the elderly and their relationship to dementia—a review. Int. J. Geriatr. Psychiatry 7(7), 473–479 (1992)

    Article  Google Scholar 

  2. Apostolova, L.G., Dutton, R.A., Dinov, I.D., Hayashi, K.M., Toga, A.W., Cummings, J.L., Thompson, P.M.: Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch. Neurol. 63(5), 693–699 (2006)

    Article  Google Scholar 

  3. Dickerson, B.C., Salat, D.H., Bates, J.F., Atiya, M., Killiany, R.J., Greve, D.N., Dale, A.M., Stern, C.E., Blacker, D., Albert, M.S., Sperling, R.A.: Medial temporal lobe function and structure in mild cognitive impairment. Ann. Neurol. 56(1), 27–35 (2004). https://doi.org/10.1002/ana.20163

    Article  Google Scholar 

  4. Friston, K.J.: Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56–78 (1994). https://doi.org/10.1002/hbm.460020107

    Article  Google Scholar 

  5. Clark, R., Punzo, G., Macdonald, M.: Network communities of dynamical influence. arXiv (2019). arXiv:1908.10129

  6. Varshney, L.R., Chen, B.L., Paniagua, E., Hall, D.H., Chklovskii, D.B.: Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7(2), e1001066 (2011)

    Article  Google Scholar 

  7. Shi, J., Malik, J.: Normalized cuts and image segmentation. Departmental Papers (CIS), p. 107 (2000)

    Google Scholar 

  8. Suk, H.I., Lee, S.W., Shen, D., A.D.N. Initiative: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220(2), 841–859 (2015)

    Article  Google Scholar 

  9. Hojjati, S.H., Ebrahimzadeh, A., Khazaee, A., Babajani-Feremi, A., A.D.N. Initiative: Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. J. Neurosci. Methods 282, 69–80 (2017)

    Article  Google Scholar 

  10. Khazaee, A., Ebrahimzadeh, A., Babajani-Feremi, A.: Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease. Brain Imaging Behav. 10(3), 799–817 (2016)

    Article  Google Scholar 

  11. Khazaee, A., Ebrahimzadeh, A., Babajani-Feremi, A., A.D.N. Initiative: Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI. Behav. Brain Res. 322, 339–350 (2017)

    Article  Google Scholar 

  12. Forouzannezhad, P., Abbaspour, A., Fang, C., Cabrerizo, M., Loewenstein, D., Duara, R., Adjouadi, A.: A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer’s disease. J. Neurosci. Methods 317, 121–140 (2019). https://doi.org/10.1016/j.jneumeth.2018.12.012

    Article  Google Scholar 

  13. Mascali, D., DiNuzzo, M., Gili, T., Moraschi, M., Fratini, M., Maraviglia, B., Serra, L., Bozzali, M., Giove, F.: Resting-state fMRI in dementia patients (2015). Harvard Dataverse. https://doi.org/10.7910/DVN/29352

  14. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M.: Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34, 939–944 (1984). https://doi.org/10.1212/wnl.34.7.939

    Article  Google Scholar 

  15. Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P.V., Ritchie, K., Rossor, M., Thal, L., Winblad, B.: Current concepts in mild cognitive impairment. Arch. Neurol. 58, 1985–1992 (2001). https://doi.org/10.1001/archneur.58.12.1985

    Article  Google Scholar 

  16. Whitfield-Gabrieli, S., Nieto-Castanon, A.: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141 (2012). https://doi.org/10.1089/brain.2012.0073

    Article  Google Scholar 

  17. Ashburner, J., Friston, K.J.: Unified segmentation. NeuroImage 26, 839–851 (2005). https://doi.org/10.1016/j.neuroimage.2005.02.018

    Article  Google Scholar 

  18. Alakörkkö, T., Saarimäki, H., Glerean, E., et al.: Effects of spatial smoothing on functional brain networks. Eur. J. Neurosci. 46(9), 2471–2480 (2017)

    Article  Google Scholar 

  19. Behzadi, Y., Restom, K., Liau, J., Liu, T.T.: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37, 90–101 (2007). https://doi.org/10.1016/j.neuroimage.2007.04.042

    Article  Google Scholar 

  20. Smith, K., Azami, H., Parra, M.A., Starr, J.M., Escudero, J.: Cluster-span threshold: an unbiased threshold for binarising weighted complete networks in functional connectivity analysis. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol. 147, pp. 2840–2843. IEEE (2015). https://doi.org/10.1109/EMBC.2015.7318983

  21. Smith, K., Abasolo, D., Escudero, J.: A comparison of the cluster-span threshold and the union of shortest paths as objective thresholds of EEG functional connectivity networks from Beta activity in Alzheimer’s disease. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2826–2829. IEEE, August 2016

    Google Scholar 

  22. Mathworks: nprtool: Neural Net Pattern Recognition tool (r2019a) (2019). https://uk.mathworks.com/help/deeplearning/ref/nprtool.html. Accessed 16 Aug 2019

  23. Mathworks: crossentropy: Neural Network performance (r2019a) (2019). https://uk.mathworks.com/help/deeplearning/ref/crossentropy.html. Accessed 16 Aug 2019

  24. Mathworks: fminunc Unconstrained Minimization (r2019a) (2019). http://uk.mathworks.com/help/optim/ug/fminunc-unconstrained-minimization.html. Accessed 16 Aug 2019

  25. Gili, T., Cercignani, M., Serra, L., Perri, R., Giove, F., Maraviglia, B., Caltagirone, C., Bozzali, M.: Regional brain atrophy and functional disconnection across Alzheimer’s disease evolution. J. Neurol. Neurosurg. Psychiatry 82(1), 58–66 (2011). https://doi.org/10.1136/jnnp.2009.199935

    Article  Google Scholar 

  26. Wang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., Wu, T., Jiang, T., Li, K.: Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 31(2), 496–504 (2006)

    Article  Google Scholar 

  27. Allen, G., Barnard, H., McColl, R., et al.: Reduced hippocampal functional connectivity in Alzheimer disease. Arch. Neurol. 64(10), 1482–1487 (2007). https://doi.org/10.1001/archneur.64.10.1482

    Article  Google Scholar 

  28. Rombouts, S.A.R.B., Barkhof, F., Goekoop, R., Stam, C.J., Scheltens, P.: Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum. Brain Mapp. 26(4), 231–239 (2005). https://doi.org/10.1002/hbm.20160

    Article  Google Scholar 

  29. Binnewijzend, M.A., Schoonheim, M.M., Sanz-Arigita, E., Wink, A.M., van der Flier, W.M., Tolboom, N., Adriaanse, S.M., Damoiseaux, J.S., Scheltens, P., van Berckel, B.N., Barkhof, F.: Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 33(9), 2018–2028 (2012). https://doi.org/10.1016/j.neurobiolaging.2011.07.003

    Article  Google Scholar 

  30. Hafkemeijer, A., Möller, C., Dopper, E.G., Jiskoot, L.C., Schouten, T.M., van Swieten, J.C., van der Flier, W.M., Vrenken, H., Pijnenburg, Y.A., Barkhof, F., Scheltens, P.: Resting state functional connectivity differences between behavioral variant frontotemporal dementia and Alzheimer’s disease. Front. Human Neurosci. 9, 474 (2015). https://doi.org/10.3389/fnhum.2015.00474

    Article  Google Scholar 

  31. Brun, A., Englund, E.: Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology 5(5), 549–564 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruaridh Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Clark, R., Nikolova, N., Macdonald, M., McGeown, W. (2020). Network Influence Based Classification and Comparison of Neurological Conditions. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 882. Springer, Cham. https://doi.org/10.1007/978-3-030-36683-4_67

Download citation

Publish with us

Policies and ethics