Skip to main content

Graph-Based Fraud Detection with the Free Energy Distance

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 882))

Included in the following conference series:

Abstract

This paper investigates a real-world application of the free energy distance between nodes of a graph [14, 20] by proposing an improved extension of the existing Fraud Detection System named APATE [36]. It relies on a new way of computing the free energy distance based on paths of increasing length, and scaling on large, sparse, graphs. This new approach is assessed on a real-world large-scale e-commerce payment transactions dataset obtained from a major Belgian credit card issuer. Our results show that the free-energy based approach reduces the computation time by one half while maintaining state-of-the art performance in term of Precision@100 on fraudulent card prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Expected total cost of the paths plus scaled relative entropy of the probability distribution of following these paths (see [20] for details).

  2. 2.

    Notice that the usual free energy distance (not directed) is defined by symmetrization of \(\phi _{ij}\) (Eq. 2, so that the resulting distance is symmetric [14, 20]), but this quantity will not be used in this work.

  3. 3.

    So that a score near 0 represents a genuine transaction and a high value represents a fraud. The higher the score, the higher the risk.

  4. 4.

    Numerical values differ from [21] because the dataset was further curated: some obvious fraud cases were removed.

References

  1. Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: a survey. J. Network Comput. Appl. 68, 90–113 (2016)

    Article  Google Scholar 

  2. Bahnsen, A.C., Stojanovic, A., Aouada, D., Ottersten, B.: Cost sensitive credit card fraud detection using bayes minimum risk. In: 2013 12th International Conference on Machine Learning and Applications, vol. 1, pp. 333–338. IEEE (2013)

    Google Scholar 

  3. Bhusari, V., Patil, S.: Study of hidden markov model in credit card fraudulent detection. Int. J. Comput. Appl. 20(5), 33–36 (2011)

    Google Scholar 

  4. Bolton, R.J., Hand, D.J.: Statistical fraud detection: a review. Stat. Sci. 1, 235–249 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Callut, J., Francoisse, K., Saerens, M., Dupont, P.: Semi-supervised classification from discriminative random walks. In: W. Daelemans, K. Morik (eds.) Proceedings of the 19th European Conference on Machine Learning (ECML 2008), Lecture Notes in Artificial Intelligence, vol. 5211, pp. 162–177. Springer, Berlin (2008)

    Google Scholar 

  6. Cao, B., Mao, M., Viidu, S., Yu, P.: Collective fraud detection capturing inter-transaction dependency. In: KDD 2017 Workshop on Anomaly Detection in Finance, pp. 66–75 (2018)

    Google Scholar 

  7. Chan, P.K., Fan, W., Prodromidis, A.L., Stolfo, S.J.: Distributed data mining in credit card fraud detection. IEEE Intell. Syst. 14(6), 67–74 (1999)

    Article  Google Scholar 

  8. Consultants, H.: The nilson report issue 1142 (2018). https://nilsonreport.com

  9. Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., Bontempi, G.: Credit card fraud detection: a realistic modeling and a novel learning strategy. IEEE Trans. Neural Networks Learn. Syst. 29(8), 3784–3797 (2018)

    Article  Google Scholar 

  10. Dal Pozzolo, A., Caelen, O., Le Borgne, Y.A., Waterschoot, S., Bontempi, G.: Learned lessons in credit card fraud detection from a practitioner perspective. Expert Syst. Appl. 41(10), 4915–4928 (2014)

    Article  Google Scholar 

  11. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. learn. res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Duman, E., Elikucuk, I.: Solving credit card fraud detection problem by the new metaheuristics migrating birds optimization. In: International Work-Conference on Artificial Neural Networks, pp. 62–71. Springer, Berlin (2013)

    Chapter  Google Scholar 

  13. Fouss, F., Saerens, M., Shimbo, M.: Algorithms and Models for Network Data and Link Analysis. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  14. Françoisse, K., Kivimäki, I., Mantrach, A., Rossi, F., Saerens, M.: A bag-of-paths framework for network data analysis. Neural Networks 90, 90–111 (2017)

    Article  Google Scholar 

  15. Gondran, M., Minoux, M.: Graphs and Algorithms. Wiley, Hoboken (1984)

    MATH  Google Scholar 

  16. Guex, G., Courtain, S., Saerens, M.: Covariance and correlation kernels on a graph in the generalized bag-of-paths formalism. arXiv preprint arXiv:1902.03002 (2019)

  17. Huang, X., Ariki, Y., Jack, M.: Hidden Markov Models for Speech Recognition. Edinburgh University Press, Edinburgh (1990)

    Google Scholar 

  18. Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P.E., He-Guelton, L., Caelen, O.: Sequence classification for credit-card fraud detection. Expert Syst. Appl. 100, 234–245 (2018)

    Article  Google Scholar 

  19. Kivimäki, I.: Distances, centralities and model estimation methods based on randomized shortest paths for network data analysis. Ph.D. thesis, UCL-Université Catholique de Louvain (2018)

    Google Scholar 

  20. Kivimäki, I., Shimbo, M., Saerens, M.: Developments in the theory of randomized shortest paths with a comparison of graph node distances. Physica A 393, 600–616 (2014)

    Article  Google Scholar 

  21. Lebichot, B., Braun, F., Caelen, O., Saerens, M.: A graph-based, semi-supervised, credit card fraud detection system. In: Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A. (eds.) International Workshop on Complex Networks and their Applications, pp. 721–733. Springer, Cham (2016)

    Google Scholar 

  22. Liu, Q., Wu, Y.: Supervised learning. Encyclopedia of the Sciences of Learning, pp. 3243–3245 (2012)

    Chapter  Google Scholar 

  23. Mantrach, A., Van Zeebroeck, N., Francq, P., Shimbo, M., Bersini, H., Saerens, M.: Semi-supervised classification and betweenness computation on large, sparse, directed graphs. Pattern Recogn. 44(6), 1212–1224 (2011)

    Article  Google Scholar 

  24. Molloy, I., Chari, S., Finkler, U., Wiggerman, M., Jonker, C., Habeck, T., Park, Y., Jordens, F., van Schaik, R.: Graph analytics for real-time scoring of cross-channel transactional fraud. In: Grossklags, J., Preneel, B. (eds.) International Conference on Financial Cryptography and Data Security, vol. 9603, pp. 22–40. Springer, Berlin (2016)

    Chapter  Google Scholar 

  25. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT press, Cambridge (2012)

    MATH  Google Scholar 

  26. Ngai, E.W., Hu, Y., Wong, Y.H., Chen, Y., Sun, X.: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature. Decision Support Systems 50(3), 559–569 (2011)

    Article  Google Scholar 

  27. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report, Stanford InfoLab (1999)

    Google Scholar 

  28. Ramaki, A.A., Asgari, R., Atani, R.E.: Credit card fraud detection based on ontology graph. Int. J. Secur. Priv. Trust Manag. (IJSPTM) 1(5), 1–12 (2012)

    Article  Google Scholar 

  29. Sánchez, D., Vila, M., Cerda, L., Serrano, J.M.: Association rules applied to credit card fraud detection. Expert syst. appl. 36(2), 3630–3640 (2009)

    Article  Google Scholar 

  30. Shen, A., Tong, R., Deng, Y.: Application of classification models on credit card fraud detection. In: 2007 International conference on service systems and service management, pp. 1–4. IEEE (2007)

    Google Scholar 

  31. Sommer, F., Fouss, F., Saerens, M.: Comparison of graph node distances on clustering tasks. In: Artificial Neural Networks and Machine Learning – Proceedings of ICANN 2016. Lecture Notes in Computer Science, vol. 9886, 192–201. Springer Cham (2016)

    Google Scholar 

  32. Sommer, F., Fouss, F., Saerens, M.: Modularity-driven kernel k-means for community detection. Artificial Neural Networks and Machine Learning (Proceedings of ICANN 2016. Lecture Notes in Computer Science, vol. 10614, pp. 423–433. Springer, Cham (2017)

    Chapter  Google Scholar 

  33. Srivastava, A., Kundu, A., Sural, S., Majumdar, A.: Credit card fraud detection using hidden markov model. IEEE Trans. dependable secure comput. 5(1), 37–48 (2008)

    Article  Google Scholar 

  34. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press Inc., Cambridge (2008)

    MATH  Google Scholar 

  35. Tong, H., Faloutsos, C., Pan, J.Y.: Fast random walk with restart and its applications. In: Sixth International Conference on Data Mining (ICDM 2006), pp. 613–622. IEEE (2006)

    Google Scholar 

  36. Van Vlasselaer, V., Bravo, C., Caelen, O., Eliassi-Rad, T., Akogu, L., Snoeck, M., Baesens, B.: Apate: a novel approach for automated credit card transaction fraud detection using network-based extensions. Decis. Support Syst. 75, 38–48 (2015)

    Article  Google Scholar 

  37. Weston, D.J., Hand, D.J., Adams, N.M., Whitrow, C., Juszczak, P.: Plastic card fraud detection using peer group analysis. Adv. Data Anal. Classif. 2(1), 45–62 (2008)

    Article  MathSciNet  Google Scholar 

  38. Wheeler, R., Aitken, S.: Multiple algorithms for fraud detection. In: Ellis, R., Moulton, M., Coenen, F. (eds.) Applications and Innovations in Intelligent Systems VII, pp. 219–231. Springer, London (2000)

    Chapter  Google Scholar 

  39. Zaslavsky, V., Strizhak, A.: Credit card fraud detection using self-organizing maps. Inf. Secur. 18, 48 (2006)

    Google Scholar 

  40. Zhang, Z., Zhou, X., Zhang, X., Wang, L., Wang, P.: A model based onconvolutional neural network for online transaction fraud detection. Secur. Commun. Networks 2018, 9 (2018)

    Google Scholar 

  41. Zhou, X., Cheng, S., Zhu, M., Guo, C., Zhou, S., Xu, P., Xue, Z., Zhang, W.: A state of the art survey of data mining-based fraud detection and credit scoring. In: MATEC Web of Conferences, vol. 189. EDP Sciences, Les Ulis (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Immediate funded by Wallon Region project and by the Defeatfrauds project funded by Innoviris. We thank these institutions for giving us the opportunity to conduct both fundamental and applied research. We also thank Worldline SA/NV, R&D, for providing us the data and expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Courtain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Courtain, S., Lebichot, B., Kivimäki, I., Saerens, M. (2020). Graph-Based Fraud Detection with the Free Energy Distance. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 882. Springer, Cham. https://doi.org/10.1007/978-3-030-36683-4_4

Download citation

Publish with us

Policies and ethics