Skip to main content

Numerical Investigation of Micro-Galvanic Corrosion in Mg Alloys: Role of the Cathodic Intermetallic Phase Size and Spatial Distributions

  • Conference paper
  • First Online:
Magnesium Technology 2020

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Magnesium alloys are of increasing interest in structural applications due to their low-density, moderate specific strength and stiffness, recyclability, and high damping among other properties. However, the wide-scale applicability of magnesium alloys in structural applications has been limited due to many factors including its poor corrosion resistance . In this work, a numerical investigation to simulate the micro-galvanic corrosion behavior was performed to examine the influence of the size and distribution of cathodic intermetallic phase (β–Mg17Al12) in a Mg matrix. The ratio of cathodic to anodic surface area was kept constant in each simulation condition to understand the effect of size and spacing distributions. In general, fragmentation of a larger intermetallic particle into smaller ones was determined to enhance the localized current density. However, the uniform distribution rather than clustered or non-uniform distribution of this small intermetallic phase throughout the matrix was found to reduce the overall dissolution current density and hence, pitting corrosion severity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion, Progress in Materials Science. 89 (2017) 92–193. https://doi.org/10.1016/j.pmatsci.2017.04.011.

  2. G. Song, Recent Progress in Corrosion and Protection of Magnesium Alloys, Advanced Engineering Materials. 7 (2005) 563–586. https://doi.org/10.1002/adem.200500013.

  3. N.T. Kirkland, J. Lespagnol, N. Birbilis, M.P. Staiger, A survey of bio-corrosion rates of magnesium alloys, Corrosion Science. 52 (2010) 287–291. https://doi.org/10.1016/j.corsci.2009.09.033.

  4. P. Garg, I. Adlakha, K.N. Solanki, Effect of solutes on ideal shear resistance and electronic properties of magnesium: A first-principles study, Acta Materialia. 153 (2018) 327–335. https://doi.org/10.1016/j.actamat.2018.05.014.

  5. C. Kale, M. Rajagopalan, S. Turnage, B. Hornbuckle, K. Darling, S.N. Mathaudhu, K.N. Solanki, On the roles of stress-triaxiality and strain-rate on the deformation behavior of AZ31 magnesium alloys, Materials Research Letters. 6 (2018) 152–158. https://doi.org/10.1080/21663831.2017.1417923.

  6. G. Song, B. Johannesson, S. Hapugoda, D. StJohn, Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc, Corrosion Science. 46 (2004) 955–977. https://doi.org/10.1016/s0010-938x(03)00190-2.

  7. O. Lunder, J.E. Lein, T.K. Aune, K. Nisancioglu, The Role of Mg 17 Al 12 Phase in the Corrosion of Mg Alloy AZ91, CORROSION. 45 (1989) 741–748. https://doi.org/10.5006/1.3585029.

  8. S. Mathieu, C. Rapin, J. Steinmetz, P. Steinmetz, A corrosion study of the main constituent phases of AZ91 magnesium alloys, Corrosion Science. 45 (2003) 2741–2755. https://doi.org/10.1016/s0010-938x(03)00109-4.

  9. R. Ambat, N.N. Aung, W. Zhou, Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy, Corrosion Science. (2000) 23.

    Google Scholar 

  10. N.N. Aung, W. Zhou, Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy, Corrosion Science. 52 (2010) 589–594. https://doi.org/10.1016/j.corsci.2009.10.018.

  11. K.D. Ralston, N. Birbilis, Effect of Grain Size on Corrosion: A Review, CORROSION. 66 (2010) 075005-075005-13. https://doi.org/10.5006/1.3462912.

  12. G.-L. Song, R. Mishra, Z. Xu, Crystallographic orientation and electrochemical activity of AZ31 Mg alloy, Electrochemistry Communications. 12 (2010) 1009–1012. https://doi.org/10.1016/j.elecom.2010.05.011.

  13. Z. Pu, G.-L. Song, S. Yang, J.C. Outeiro, O.W. Dillon, D.A. Puleo, I.S. Jawahir, Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy, Corrosion Science. 57 (2012) 192–201. https://doi.org/10.1016/j.corsci.2011.12.018.

  14. H. Wang, Y. Estrin, H. Fu, G. Song, Z. Zúberová, The Effect of Pre-Processing and Grain Structure on the Bio-Corrosion and Fatigue Resistance of Magnesium Alloy AZ31, Advanced Engineering Materials. 9 (2007) 967–972. https://doi.org/10.1002/adem.200700200.

  15. T. Zhang, Y. Shao, G. Meng, Z. Cui, F. Wang, Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior, Corrosion Science. 53 (2011) 1960–1968. https://doi.org/10.1016/j.corsci.2011.02.015.

  16. A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, S. Feliú, Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media, Electrochimica Acta. 53 (2008) 7890–7902. https://doi.org/10.1016/j.electacta.2008.06.001.

  17. S. Lee, S.H. Lee, D.H. Kim, Effect of Y, Sr, and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys, Metallurgical and Materials Transactions A. 29 (1998) 1221–1235. https://doi.org/10.1007/s11661-998-0249-0.

  18. D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, E.H. Han, Effect of Y concentration on the microstructure and mechanical properties of as-cast Mg–Zn–Y–Zr alloys, Journal of Alloys and Compounds. 432 (2007) 129–134. https://doi.org/10.1016/j.jallcom.2006.05.123.

  19. M. Horstemeyer, High cycle fatigue of a die cast AZ91E-T4 magnesium alloy, Acta Materialia. 52 (2004) 1327–1336. https://doi.org/10.1016/j.actamat.2003.11.018.

  20. H. Feng, S. Liu, Y. Du, T. Lei, R. Zeng, T. Yuan, Effect of the second phases on corrosion behavior of the Mg-Al-Zn alloys, Journal of Alloys and Compounds. 695 (2017) 2330–2338. https://doi.org/10.1016/j.jallcom.2016.11.100.

  21. X. Chen, F. Pan, J. Mao, J. Wang, D. Zhang, A. Tang, J. Peng, Effect of heat treatment on strain hardening of ZK60 Mg alloy, Materials & Design. 32 (2011) 1526–1530. https://doi.org/10.1016/j.matdes.2010.10.008.

  22. G.B. Hamu, D. Eliezer, L. Wagner, The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy, Journal of Alloys and Compounds. 468 (2009) 222–229. https://doi.org/10.1016/j.jallcom.2008.01.084.

  23. D. Song, A. Ma, J. Jiang, P. Lin, D. Yang, J. Fan, Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution, Corrosion Science. 52 (2010) 481–490. https://doi.org/10.1016/j.corsci.2009.10.004.

  24. Z. Zhang, H. Xu, qiang Wang, Corrosion and mechanical properties of hot-extruded AZ31 magnesium alloys, Transactions of Nonferrous Metals Society of China. 18 (2008) s140–s144. https://doi.org/10.1016/s1003-6326(10)60190-2.

  25. I. Adlakha, B.G. Bazehhour, N.C. Muthegowda, K.N. Solanki, Effect of mechanical loading on the galvanic corrosion behavior of a magnesium-steel structural joint, Corrosion Science. 133 (2018) 300–309. https://doi.org/10.1016/j.corsci.2018.01.038.

  26. K.B. Deshpande, Validated numerical modelling of galvanic corrosion for couples: Magnesium alloy (AE44)–mild steel and AE44–aluminium alloy (AA6063) in brine solution, Corrosion Science. 52 (2010) 3514–3522. https://doi.org/10.1016/j.corsci.2010.06.031.

  27. B. Gholami Bazehhour, I. Adlakha, K.N. Solanki, Role of Static and Cyclic Deformation on the Corrosion Behavior of a Magnesium-Steel Structural Joint, JOM. 69 (2017) 2328–2334. https://doi.org/10.1007/s11837-017-2433-4.

  28. K.A. Spies, V.V. Viswanathan, A. Soulami, Y. Hovanski, V.V. Joshi, Galvanically Graded Interface: A Computational Model for Mitigating Galvanic Corrosion Between Magnesium and Mild Steel, in: V.V. Joshi, J.B. Jordon, D. Orlov, N.R. Neelameggham (Eds.), Magnesium Technology 2019, Springer International Publishing, Cham, 2019: pp. 135–144. https://doi.org/10.1007/978-3-030-05789-3_21.

  29. L. Yin, Y. Jin, C. Leygraf, N. Birbilis, J. Pan, Numerical Simulation of Micro-Galvanic Corrosion in Al Alloys: Effect of Geometric Factors, Journal of The Electrochemical Society. 164 (2017) C75–C84. https://doi.org/10.1149/2.1221702jes.

  30. J. Xiao, S. Chaudhuri, Predictive modeling of localized corrosion: An application to aluminum alloys, Electrochimica Acta. 56 (2011) 5630–5641. https://doi.org/10.1016/j.electacta.2011.04.019.

  31. K.B. Deshpande, Numerical modeling of micro-galvanic corrosion, Electrochimica Acta. 56 (2011) 1737–1745. https://doi.org/10.1016/j.electacta.2010.09.044.

  32. N. Murer, R. Oltra, B. Vuillemin, O. Néel, Numerical modelling of the galvanic coupling in aluminium alloys: A discussion on the application of local probe techniques, Corrosion Science. 52 (2010) 130–139. https://doi.org/10.1016/j.corsci.2009.08.051.

  33. A. Taleb, J. Stafiej, Numerical simulation of the effect of grain size on corrosion processes: Surface roughness oscillation and cluster detachment, Corrosion Science. 53 (2011) 2508–2513. https://doi.org/10.1016/j.corsci.2011.04.008.

  34. J.T. Darsell, N.R. Overman, V.V. Joshi, S.A. Whalen, S.N. Mathaudhu, Shear Assisted Processing and Extrusion (ShAPETM) of AZ91E Flake: A Study of Tooling Features and Processing Effects, Journal of Materials Engineering and Performance. 27 (2018) 4150–4161. https://doi.org/10.1007/s11665-018-3509-1.

  35. N.R. Overman, S.A. Whalen, M.E. Bowden, M.J. Olszta, K. Kruska, T. Clark, E.L. Stevens, J.T. Darsell, V.V. Joshi, X. Jiang, K.F. Mattlin, S.N. Mathaudhu, Homogenization and texture development in rapidly solidified AZ91E consolidated by Shear Assisted Processing and Extrusion (ShAPE), Materials Science and Engineering: A. 701 (2017) 56–68. https://doi.org/10.1016/j.msea.2017.06.062.

  36. S. Whalen, N. Overman, V. Joshi, T. Varga, D. Graff, C. Lavender, Magnesium alloy ZK60 tubing made by Shear Assisted Processing and Extrusion (ShAPE), Materials Science and Engineering: A. 755 (2019) 278–288. https://doi.org/10.1016/j.msea.2019.04.013.

  37. W. Fu, R. Wang, K. Wu, J. Kuang, J. Zhang, G. Liu, J. Sun, The influences of multiscale second-phase particles on strength and ductility of cast Mg alloys, Journal of Materials Science. 54 (2019) 2628–2647. https://doi.org/10.1007/s10853-018-2980-2.

Download references

Acknowledgements

The authors would like to thank Pacific Northwest National Laboratory and the Office of Naval Research (N000141110793) for their financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Solanki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beura, V.K., Garg, P., Joshi, V.V., Solanki, K.N. (2020). Numerical Investigation of Micro-Galvanic Corrosion in Mg Alloys: Role of the Cathodic Intermetallic Phase Size and Spatial Distributions. In: Jordon, J., Miller, V., Joshi, V., Neelameggham, N. (eds) Magnesium Technology 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36647-6_34

Download citation

Publish with us

Policies and ethics