Skip to main content

Deviations from Theoretical Orientation Relationship Along Tensile Twin Boundaries in Magnesium

  • Conference paper
  • First Online:
Magnesium Technology 2020

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 1876 Accesses

Abstract

Deformation twinning is a prevalent mode of plastic deformation in hexagonal close packed (HCP) magnesium. Twin domains are associated with significant lattice reorientation and localized shear. The theoretical misorientation angle for the most common \( \left\{ {10\overline{1} 2} \right\}\) tensile twin in magnesium is 86.3°. Through electron backscatter diffraction characterization of twinning microstructure, we show that the twin boundary misorientation at the twin tips is approximately 85°, and it is close to the theoretical value only along the central part of the twin. The variations in twin/matrix misorientation along the twin boundary control the twin thickening process by affecting the nucleation, glide of twinning partials, and migration of twinning facets. To understand this observation, we employ a 3D crystal plasticity model with explicit twinning. The model successfully captures the experimentally observed misorientation variation, and it reveals that the twin boundary misorientation variations are governed by the local plasticity that accommodates the characteristic twin shear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.H. Yoo, Slip, Twinning, and Fracture in Hexagonal Close-Packed Metals, Metall Trans A 12(3) (1981) 409-418.

    Google Scholar 

  2. I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, C.N. Tome, Statistical analyses of deformation twinning in magnesium (vol 90, pg 2161, 2010), Philos Mag 90(30) (2010) 4073-4074.

    Google Scholar 

  3. M.A. Kumar, M. Wroński, R.J. McCabe, L. Capolungo, K. Wierzbanowski, C.N. Tomé, Role of microstructure on twin nucleation and growth in HCP titanium: A statistical study, Acta Mater 148 (2018) 123-132.

    Google Scholar 

  4. A. Serra, D. Bacon, Computer simulation of screw dislocation interactions with twin boundaries in HCP metals, Acta metallurgica et materialia 43(12) (1995) 4465-4481.

    Google Scholar 

  5. A. Serra, D.J. Bacon, Interaction of a moving {} twin boundary with perfect dislocations and loops in a hcp metal, Philos Mag 90(7-8) (2010) 845-861.

    Google Scholar 

  6. A. Serra, D.J. Bacon, R.C. Pond, Twins as barriers to basal slip in hexagonal-close-packed metals, Metallurgical and Materials Transactions A 33(13) (2002) 809-812.

    Google Scholar 

  7. L. Jiang, M.A. Kumar, I.J. Beyerlein, X. Wang, D. Zhang, C. Wu, C. Cooper, T.J. Rupert, S. Mahajan, E.J. Lavernia, J.M. Schoenung, Twin formation from a twin boundary in Mg during in-situ nanomechanical testing, Materials Science and Engineering: A 759 (2019) 142-153.

    Google Scholar 

  8. G. Proust, C.N. Tome, A. Jain, S.R. Agnew, Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31, Int J Plasticity 25(5) (2009) 861-880.

    Google Scholar 

  9. A.A. Salem, S.R. Kalidindi, R.D. Doherty, S.L. Semiatin, Strain hardening due to deformation twinning in alpha-titanium: Mechanisms, Metall Mater Trans A 37a(1) (2006) 259-268.

    Google Scholar 

  10. Y.N. Wang, J.C. Huang, The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy, Acta Mater 55(3) (2007) 897-905.

    Google Scholar 

  11. M. Wronski, M. Arul Kumar, L. Capolungo, R. Madec, K. Wierzbanowski, C.N. Tome, Deformation behavior of CP-titanium: Experiment and Crystal plasticity modeling, Mat Sci Eng a-Struct 724 (2018) 289-297.

    Google Scholar 

  12. M.H. Yoo, J.K. Lee, Deformation Twinning in Hcp Metals and Alloys, Philos Mag A 63(5) (1991) 987-1000.

    Google Scholar 

  13. X. Zhang, B. Li, X. Wu, Y. Zhu, Q. Ma, Q. Liu, P. Wang, M. Horstemeyer, Twin boundaries showing very large deviations from the twinning plane, Scripta Mater 67(10) (2012) 862-865.

    Google Scholar 

  14. M. Gharghouri, G. Weatherly, J. Embury, The interaction of twins and precipitates in a Mg-7.7 at.% Al alloy, Philosophical Magazine A 78(5) (1998) 1137-1149.

    Google Scholar 

  15. B. Li, E. Ma, Atomic shuffling dominated mechanism for deformation twinning in magnesium, Phys Rev Lett 103(3) (2009) 035503.

    Google Scholar 

  16. Y. Zhang, Z.S. Dong, J.T. Wang, J.Q. Liu, N. Gao, T.G. Langdon, An analytical approach and experimental confirmation of dislocation–twin boundary interactions in titanium, J Mater Sci 48(13) (2013) 4476-4483.

    Google Scholar 

  17. Q. Sun, X. Fang, Y. Wang, L. Tan, X. Zhang, Changes in misorientations of {1011} twin boundaries in deformed magnesium alloy, J Mater Sci 53(10) (2018) 7834-7844.

    Google Scholar 

  18. Y. Liu, X. Chen, K. Wei, L. Xiao, B. Chen, H. Long, Y. Yu, Z. Hu, H. Zhou, Effect of Micro-Steps on Twinning and Interfacial Segregation in Mg–Ag Alloy, Materials 12(8) (2019) 1307.

    Google Scholar 

  19. M.A. Kumar, I.J. Beyerlein, C.N. Tome, Effect of local stress fields on twin characteristics in HCP metals, Acta Mater 116 (2016) 143-154.

    Google Scholar 

  20. M.A. Kumar, A.K. Kanjarla, S.R. Niezgoda, R.A. Lebensohn, C.N. Tome, Numerical study of the stress state of a deformation twin in magnesium, Acta Mater 84 (2015) 349-358.

    Google Scholar 

  21. A.K. Kanjarla, R.A. Lebensohn, L. Balogh, C.N. Tome, Study of internal lattice strain distributions in stainless steel using a full-field elasto-viscoplastic formulation based on fast Fourier transforms, Acta Mater 60(6-7) (2012) 3094-3106.

    Google Scholar 

  22. R.A. Lebensohn, A.K. Kanjarla, P. Eisenlohr, An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials, Int J Plasticity 32-33 (2012) 59-69.

    Google Scholar 

  23. G. Simmons, H. Wang, Single crystal elastic constants and calculated aggregate properties: A Handbook, MIT press 1971.

    Google Scholar 

  24. I.J. Beyerlein, R.J. McCabe, C.N. Tome, Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study, J Mech Phys Solids 59(5) (2011) 988-1003.

    Google Scholar 

  25. M. Ardeljan, I.J. Beyerlein, M. Knezevic, Effect of dislocation density-twin interactions on twin growth in AZ31 as revealed by explicit crystal plasticity finite element modeling, Int J Plasticity 99 (2017) 81-101.

    Google Scholar 

  26. M. Gong, V. Taupin, L. Capolungo, The kinetics of growth of twins: 3d perspectives, (in preparation) (2019).

    Google Scholar 

  27. J.T. Lloyd, A dislocation-based model for twin growth within and across grains, P Roy Soc a-Math Phy 474(2210) (2018).

    Google Scholar 

  28. A. Serra, D.J. Bacon, A new model for {10(1)over-bar2} twin growth in hcp metals, Philos Mag A 73(2) (1996) 333-343.

    Google Scholar 

  29. F. Wang, C.D. Barrett, R.J. McCabe, H. El Kadiri, L. Capolungo, S.R. Agnew, Dislocation induced twin growth and formation of basal stacking faults in \( \left\{ {10\overline{1} 2} \right\} \) twins in pure Mg, Acta Mater 165 (2019) 471-485.

    Google Scholar 

  30. B. Xu, L. Capolungo, D. Rodney, On the importance of prismatic/basal interfaces in the growth of (1012) twins in hexagonal close packed crystals, Scripta Mater 68(11) (2013) 901-904.

    Google Scholar 

  31. C.D. Barrett, H. El Kadiri, Impact of deformation faceting on {1 0 (1)over-bar 2}, {1 0 (1)over-bar 1} and {1 0 (1)over-bar3} embryonic twin nucleation in hexagonal close-packed metals, Acta Mater 70 (2014) 137-161.

    Google Scholar 

  32. A. Ostapovets, A. Serra, Characterization of the matrix-twin interface of a (10(1)over-bar2) twin during growth, Philos Mag 94(25) (2014) 2827-2839.

    Google Scholar 

  33. Q. Sun, X. Zhang, Y. Ren, J. Tu, Q. Liu, Interfacial structure of \( \left\{ {10\overline{1} 2} \right\} \) twin tip in deformed magnesium alloy, Scripta Mater 90 (2014) 41-44.

    Google Scholar 

  34. Q. Sun, X.Y. Zhang, J. Tu, Y. Ren, H. Qin, Q. Liu, Characterization of basal-prismatic interface of {10(1)over-bar2} twin in deformed titanium by high-resolution transmission electron microscopy, Phil Mag Lett 95(3) (2015) 145-151.

    Google Scholar 

  35. Y. Liu, N. Li, S. Shao, M. Gong, J. Wang, R.J. McCabe, Y. Jiang, C.N. Tomé, Characterizing the boundary lateral to the shear direction of deformation twins in magnesium, Nat Commun 7 (2016) 11577.

    Google Scholar 

  36. M.A. Kumar, B. Clausen, L. Capolungo, R.J. McCabe, W. Liu, J.Z. Tischler, C.N. Tome, Deformation twinning and grain partitioning in a hexagonal close-packed magnesium alloy, Nat Commun 9 (2018).

    Google Scholar 

  37. M.A. Kumar, I.J. Beyerlein, R.A. Lebensohn, C.N. Tome, Modeling the effect of neighboring grains on twin growth in HCP polycrystals, Model Simul Mater Sc 25(6) (2017) Article 064007.

    Google Scholar 

Download references

Acknowledgements

This work is fully funded by the U.S. Department of Energy, Office of Basic Energy Sciences Project FWP 06SCPE401. I. J. B. acknowledges financial support from the National Science Foundation (NSF CMMI-1729887). B. L. acknowledges financial support from the National Defense Science and Engineering Graduate (NDSEG) Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Leu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leu, B., Arul Kumar, M., Liu, Y., Beyerlein, I.J. (2020). Deviations from Theoretical Orientation Relationship Along Tensile Twin Boundaries in Magnesium. In: Jordon, J., Miller, V., Joshi, V., Neelameggham, N. (eds) Magnesium Technology 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36647-6_20

Download citation

Publish with us

Policies and ethics