Skip to main content

Considerations on the Individualization of Motor Imagery Neurofeedback Training

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1068))

Abstract

Motor imagery (MI), the mental rehearsal of a movement task, is known to activate similar brain areas to the ones related to actual motor execution. Based on this, MI has been used in many brain-computer interface (BCI) applications, ranging from motor rehabilitation to the actual control of external hardware and other devices. Although great improvement has been made in the field, MI-BCIs still face several issues that limit their applicability to the clinical environment. The aim of this work was to improve on the understanding of one of these issues - namely, the inter and intra-subject variability regarding the electroencephalography (EEG) signals produced by MI tasks. EEG data from 10 healthy subjects who underwent 12 hands-MI sessions, without any feedback, were collected. Differently than most current studies in the field, we screened our analysis into small frequency intervals, from 5–26 Hz, at 4 Hz steps. We then computed how often a given (electrode, frequency interval) pair was optimal for BCI classification, across all sessions, attempting to identify features that would maximize reproducibility. Although similar electrodes are most recurrent across all subjects, each participant displayed their own particularities. Also, these individual patterns did not necessarily reflect the traditional locations over the primary sensorimotor cortex of most EEG-MI studies. Furthermore, our classification results suggested that identifying the best spectral intervals, and not just electrodes, is crucial for improving results. Given the reduced number of existing training protocols supporting individualization, we emphasize that considering subjects’ particularities is essential.

Supported by FAPESP (São Paulo Research Foundation; grants 2016/22116-9, 2017/10341-0 and 2013/07559-3) and CNPq (National Council for Scientific and Technological Development; grant no. 142229/2016-4).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors 12(2), 1211–1279 (2012)

    Article  Google Scholar 

  2. Ahn, M., Jun, S.C.: Performance variation in motor imagery brain-computer interface: a brief review. J. Neurosci. Meth. 243, 103–110 (2015)

    Article  Google Scholar 

  3. Alonso-Valerdi, L.M., Salido-Ruiz, R.A., Ramirez-Mendoza, R.A.: Motor imagery based brain-computer interfaces: an emerging technology to rehabilitate motor deficits. Neuropsychologia 79, 354–363 (2015)

    Article  Google Scholar 

  4. Ortner, R., Irimia, D.C., Scharinger, J., Cuger, C.: A motor imagery based brain-computer interface for stroke rehabilitation. Stud. Health Technol. Inform. 181, 319–323 (2012)

    Google Scholar 

  5. Barbosa, A.O.G., Achanccaray D.R., Meggiolaro, M.A.: Activation of a mobile robot through a brain computer interface. In: 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA (2010)

    Google Scholar 

  6. King. C.E., et al.: Noninvasive brain-computer interface driven hand orthosis. In: 33rd Annual Conference of the IEEE EMBS Boston, Massachusetts, USA (2011)

    Google Scholar 

  7. Meyer, T., et al.: A brain–robot interface for studying motor learning after stroke. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)

    Google Scholar 

  8. McCane, L.M., et al.: P300-based Brain-Computer Interface (BCI) Event-Related Potentials (ERPs): People with Amyotrophic Lateral Sclerosis (ALS) vs Age-Matched Controls. Clin. Neurophysiol. 126(11), 2124–2131 (2015)

    Article  Google Scholar 

  9. Fazel-Rezai, R., Allison, B.D., Guger, C., Sellers, E.W., Kleih, S.C., Kübler, A.: 300 brain computer interface: current challenges and emerging trends. Front. Neuroeng. 5, 14 (2012)

    Article  Google Scholar 

  10. Chen, J., Zhang, D., Engel, A.K., Gong, Q., Maye, A.: Application of a single-flicker online SSVEP BCI for spatial navigation. PLoS One 12(5), e0178385 (2017)

    Article  Google Scholar 

  11. Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M.: Bio-Inspired systems: computational and ambient intelligence. In: 10th International Work-Conference on Artificial Neural Networks (IWANN), Salamanca, Spain. Proceedings, Part I (2009)

    Google Scholar 

  12. Rak, R.J., Kolodziej, M., Majkowski, A.: Brain-computer interfaces as a measurement and control system the review paper. Metrol. Meas. Syst. XIX(3), 427–444 (2012)

    Google Scholar 

  13. Abdulkader, S.N., Atia, A., Mostafa-Sami, M.: Brain computer interfacing: applications and challenges. Egypt. Inform. J. 16(2), 213–230 (2015)

    Article  Google Scholar 

  14. Cervera, M.A., et al.: Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann. Clin. Transl. Neurol. 5(5), 651–663 (2018)

    Article  Google Scholar 

  15. Moriya, M., Sakatani, K.: Effects of motor imagery on cognitive function and prefrontal cortex activity in normal adults evaluated by NIRS. Adv. Exp. Med. Biol. 977, 227–231 (2017)

    Article  Google Scholar 

  16. Zhang, W., Tan, C., Sun, F., Wu, H., Zhang, B.: A review of EEG-based brain-computer interface systems design. Brain Sci. Adv. 4(2), 156–167 (2018)

    Google Scholar 

  17. Padfield, N., Zabalza, J., Zhao, H., Masero, V., Ren, J.: Brain-computer interfaces using motor imagery: techniques and challenges. Sensors 19, 1423 (2019)

    Article  Google Scholar 

  18. Vidaurre, C., Blankertz, B.: Towards a cure for BCI illiteracy. Brain Topogr. 32(2), 194–198 (2010)

    Article  Google Scholar 

  19. Dickhaus, T., Sannelli, C., Müller, K.R., Curio, G., Blankertz, B.: Predicting BCI performance to study BCI illiteracy. Eighteenth Ann. Comput. Neurosci. Meeting BMC Neurosci. 10(1), P84 (2009)

    Google Scholar 

  20. Thompson, M.: Critiquing the Concept of BCI Illiteracy. Science and Engineering Ethics (2018)

    Google Scholar 

  21. Hwang, H.J., Kwon, K., Im, C.H.: Neurofeedback-based motor imagery training for brain-computer interface (BCI). J. Neurosci. Meth. 179(1), 150–156 (2009)

    Article  Google Scholar 

  22. Xia, B., Zhang, Q., Xie, H., Li, J.: A Neurofeedback training paradigm for motor imagery based Brain-Computer Interface. IEEE World Congress on Computational Intelligence, Brisbrane (2012)

    Google Scholar 

  23. Lotte, F., Larrue, F., Mühl, C.: Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design. Front. Hum. Neurosci. 7, 568 (2013)

    Article  Google Scholar 

  24. Attina, V., Maby, E., Bouet, R., Gibert, G., Mattout, J., Bertrand, O.: The importance of individual features for motor-imagery based BCI. In: 4th International Brain-Computer Interface Workshop and Training Course (2008)

    Google Scholar 

  25. Alhaddad, M.J.: Common average reference (CAR) improves P300 speller. Int. J. Eng. Technol. 2(3), 451–464 (2012)

    Google Scholar 

  26. Kong, W., Zhou, Z., Hu, S., Zhang, J., Babiloni, F., Dai, G.: Automatic and direct identification of blink components from scalp EEG. Sensors 13(8), 10783–10801 (2013)

    Article  Google Scholar 

  27. Pfurtscheller, G.: Spatiotemporal ERD/ERS patterns during voluntary movement and motor imagery. In: Ambler, Z., Nevšímalová, S., Kadaňka, Z., Rossini, P.M.: Supplements to Clinical Neurophysiology 53, 196–198 (2000)

    Google Scholar 

  28. Andrew, W.: Statistical Pattern Recognition, 2nd edn. Willey and Sons, Hoboken (2002)

    MATH  Google Scholar 

  29. Kabedon, C., Leroy, F., Simmonet, H., Perrot, M., Dubois, J., Dehaene-Lambertz, G.: Anatomical correlations of the international 10–20 sensor placement system in infants. NeuroImage 99, 342–356 (2014)

    Article  Google Scholar 

  30. Towle, V.L., et al.: The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. Electroencephalogr. Clin. Neurophysiol. 86, 1–6 (1993)

    Article  Google Scholar 

  31. Okamoto, M., et al.: Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. NeuroImage 21(1), 99–111 (2004)

    Article  Google Scholar 

  32. Oostra, K.M., Bladel, A.V., Vanhoonacker, A.C.L., Vingerhoets, G.: Damage to fronto-parietal networks impairs motor imagery ability after stroke: a voxel-based lesion symptom mapping study. Front. Behav. Neurosci. 10, 5 (2016)

    Article  Google Scholar 

  33. Stefano Filho, C.A., Attux, R., Castellano, G.: EEG sensorimotor rhythms’ variation and functional connectivity measures during motor imagery: linear relations and classification approaches. PeerJ:e3983 (2017)

    Google Scholar 

  34. Rodrigues, P.G., Stefano Filho, C.A., Attux, R., Castellano, G., Soriano, D.C.: Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces. Medical & Biological Engineering & Computing. https://doi.org/10.1007/s11517-019-01989-w (2019)

    Article  Google Scholar 

  35. Ge, S., Wang, R., Yu, D.: Classification of four-class motor imagery employing single-channel electroencephalography. PLoS One 9(6), e98019 (2014)

    Article  Google Scholar 

  36. Aflalo, T., et al.: Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Neurophysiology 348(6237), 906–910 (2015)

    Google Scholar 

  37. Tong, Y., et al.: Motor imagery-based rehabilitation: potential neural correlates and clinical application for functional recovery of motor deficits after stroke. Aging Dis. 8(3), 364–371 (2017)

    Article  Google Scholar 

  38. Fleming, M.K., Stinear, C.M., Byblow, W.D.: Bilateral parietal cortex function during motor imagery. Exp. Brain Res. 201(3), 499–508 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Stefano Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stefano Filho, C.A., Attux, R., Castellano, G. (2019). Considerations on the Individualization of Motor Imagery Neurofeedback Training. In: Cota, V., Barone, D., Dias, D., Damázio, L. (eds) Computational Neuroscience. LAWCN 2019. Communications in Computer and Information Science, vol 1068. Springer, Cham. https://doi.org/10.1007/978-3-030-36636-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36636-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36635-3

  • Online ISBN: 978-3-030-36636-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics