Skip to main content

Method for the Improvement of Knee Angle Accuracy Based on Kinect and IMU: Preliminary Results

  • Conference paper
  • First Online:
Computational Neuroscience (LAWCN 2019)

Abstract

One way to identify musculoskeletal disorders in the lower limb is through the functional examination where the ranges of normality of the joints are evaluated. Currently, this test can be performed with technological support, with optical sensors and inertial measurement sensors (IMU) being the most used. Kinect has been widely used for the functional evaluation of the human body, however, there are some limits to the movements made in the depth plane and when there is occlusion of the limbs. Inertial measurement sensors (IMU) allow orientation and acceleration measurements to be obtained with a high sampling rate, with some restrictions associated with drift. This article proposes a methodology that combines the acceleration measures of the IMU and kinect sensors in two planes of movement (Frontal and sagittal). These measurements are filtered in the preprocessing stage according to a Kalman filter and are obtained from a mathematical equation that allows them to be merged. The fusion system data obtains acceptable RMS error values of 5.5\(^{\circ }\) and an average consistency of 92.5% for the sagittal plane with respect to the goniometer technique. The data is shown through an interface that allows the visualization of knee joint kinematic data, as well as tools for the analysis of signals by the health professional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rienk, P., Jensen, P.L., Tony, L.: Los trastornos musculoesqueléticos de origen laboral en los Estados miembros de la Unión Europea (2010)

    Google Scholar 

  2. Asociación internacional de la Seguridad Social, La prevención de las enfermedades profesionales (2013)

    Google Scholar 

  3. De Jaén, U.: Tratamiento de la tendinopatía rotuliana

    Google Scholar 

  4. D’Souza, J., Franzblau, A., Werner, R.: Review of epidemiologic studies on occupational factors and lower extremity musculoskeletal and vascular disorders and symptoms. J. Occup. Rehabil. 15(2), 129–165 (2005)

    Article  Google Scholar 

  5. Cifuentes, C., Martínez, F., Romero, E.: Análisis teórico y computacional de la marcha normal y patológica: una revisión. Rev. Med. 18(2), 182 (2010)

    Article  Google Scholar 

  6. Mariana Haro, D.: Laboratorio de análisis de marcha y movimiento, Rev. Médica Clínica Las Condes, 25(2), 237–247 (2014)

    Article  Google Scholar 

  7. Støvring, N.M., et al.: Multi-kinect skeleton fusion for enactive games. In: Brooks, A.L., Brooks, E. (eds.) ArtsIT/DLI -2016. LNICST, vol. 196, pp. 173–180. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55834-9_20

    Chapter  Google Scholar 

  8. Li, S., Pathirana, P.N., Caelli, T.: Multi-kinect skeleton fusion for physical rehabilitation monitoring. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, pp. 5060–5063 (2014)

    Google Scholar 

  9. Moon, S., Park, Y., Ko, D.W., Suh, I.H.: Multiple kinect sensor fusion for human skeleton tracking using Kalman filtering. Int. J. Adv. Robot. Syst. 13(2) (2016)

    Article  Google Scholar 

  10. Bravo, D.A., Rengifo, C.F., Agredo, W.: Comparación de dos sistemas de captura de movimiento por medio de las trayectorias articulares de marcha. Rev. Mex. Ing. Biomédica 37(2), 149–160 (2017)

    Google Scholar 

  11. Calderita, L.V., Bandera, J.P., Bustos, P., Skiadopoulos, A.: Model-based reinforcement of kinect depth data for human motion capture applications. Sensors (Switzerland) 13(7), 8835–8855 (2013)

    Article  Google Scholar 

  12. Dao, T.T., Pouletaut, P., Gamet, D., Christine Ho Ba Tho, M.: Real-time rehabilitation system of systems for monitoring the biomechanical feedbacks of the musculoskeletal system. In: Nguyen, V.-H., Le, A.-C., Huynh, V.-N. (eds.) Knowledge and Systems Engineering. AISC, vol. 326, pp. 553–565. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11680-8_44

    Chapter  Google Scholar 

  13. Connork, P., Ross, P.: Biometric recognition by gait: a survey of modalities and features. Comput. Vis. Image Underst. 167, 1–27 (2018)

    Article  Google Scholar 

  14. Brandão, A.F., Dias, D.R.C., Castellano, G., Parizotto, N.A., Trevelin, L.C.: RehabGesture: an alternative tool for measuring human movement. Telemed. e-Health 22(7), 584–589 (2016)

    Article  Google Scholar 

  15. Napoli, A., Glass, S., Ward, C., Tucker, C., Obeid, I.: Performance analysis of a generalized motion capture system using microsoft kinect 2.0. Biomed. Signal Process. Control 38, 265–280 (2017)

    Article  Google Scholar 

  16. Pérez-Alba, K., León-Aguilar, A., Salido-Ruiz, R.: Estudio comparativo de métodos para el análisis del movimiento en 2D: ventajas y desventajas del uso de marcadores. Memorias del Congr. Nac. Ing. Biomédica 4(1), 294–297 (2017)

    Google Scholar 

  17. Lin, C.H., Liu, J.C., Lin, S.Y.: 3-dimension personal identification and its applications based on kinect, pp. 143–146 (2016)

    Google Scholar 

  18. Destelle, F., et al.: Low-cost accurate skeleton tracking based on fusion of kinect and wearable inertial sensors. In: 2014 22nd European Signal Processing Conference (EUSIPCO), Portugal, pp. 371–375 (2014)

    Google Scholar 

  19. Bo, A., Hayashibe, M., Poignet, P., Padilha, A.: Joint angle estimation in rehabilitation with inertial sensors and its integration with Kinect. In: Conference Proceedings IEEE Engineering in Medicine and Biology Society, Boston, pp. 3479–3483 (2011)

    Google Scholar 

  20. Diebel, J.: Representing attitude: euler angles, unit quaternions, and rotation vectors, Stanford (2006)

    Google Scholar 

  21. Glonek, G., Wojciechowski, A.: Hybrid orientation based human limbs motion tracking method, Standford, Switzerland, vol. 17, no. 12, p. 2857 (2017)

    Article  Google Scholar 

  22. Chen, S., Brantley, J., Kim, T., Lach, J.: Characterizing and minimizing synchronization and calibration errors in inertial body sensor networks. In: Proceedings of the Fifth International Conference on Body Area Networks - BodyNets, Corfu, Greece, p. 138 (2010)

    Google Scholar 

  23. Wåhslén, J., Orhan, I., Lindh, T.: Local time synchronization in bluetooth piconets for data fusion using mobile phones. In: 2011 International Conference on Body Sensor Networks, pp. 133–138. IEEE Xplore, Dallas (2011)

    Google Scholar 

  24. Tannous, H., Istrate, D., Benlarbi-Delai, A., Sarrazin, J.: A new multi-sensor fusion scheme to improve the accuracy of knee flexion kinematics for functional rehabilitation movements sensors, vol. 16, no. 11. MEDLINE, Switzerland (2016)

    Article  Google Scholar 

  25. Brosseau, L., et al.: Intra-and intertester reliability and criterion validity of the parallelogram and universal goniometers for measuring maximum active knee flexion and extension of patients with knee restrictions. Arch. Phys. Med. Rehabil. 82(3), 396–402 (2001)

    Article  Google Scholar 

  26. Lesmes, J.D.: Evaluación clínico-funcional del movimiento corporal humano. Ed. Médica Panamericana (2007)

    Google Scholar 

Download references

Acknowledgements

This research work is supported by the seed group ‘SIngBio Seedbed of Research in Engineering and Biomedical Sciences’ of the Universidad de Caldas. In the same way, this work was supported by the Mechatronic Engineering research Group of the Mariana University. Also the authors are very grateful for the valuable support given by SDAS Research Group (www.sdas-group.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mayorca-Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mayorca-Torres, D., Caicedo-Eraso, J.C., Peluffo-Ordoñez, D.H. (2019). Method for the Improvement of Knee Angle Accuracy Based on Kinect and IMU: Preliminary Results. In: Cota, V., Barone, D., Dias, D., Damázio, L. (eds) Computational Neuroscience. LAWCN 2019. Communications in Computer and Information Science, vol 1068. Springer, Cham. https://doi.org/10.1007/978-3-030-36636-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36636-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36635-3

  • Online ISBN: 978-3-030-36636-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics