Skip to main content

A New Method to Obtain Cellulose Nanofiber from Wood

  • Conference paper
  • First Online:

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Cellulose nanofiber (CNF) can be obtained from natural or waste wood by acid hydrolysis. In this unprecedented research, we describe a process for producing CNF with nitric acid. Crystallinity index of approximately 84% was obtained. Eucalyptus certified by Forest Stewardship Council (FSC) was chosen as source aiming to ensure equal reproducibility of future experiments. A wood sample was treated by acid hydrolysis during almost 300 min. The resulting mass was filtered in a vacuum system and dried during one hour at temperature about 100 °C in an oven. The wood sample was also analyzed by X-Ray diffraction (XRD) to be sure of its crystallinity and submitted to a thermal analysis. Cellulose nanofiber has a greater axial elastic modulus (Young’s modulus) than Kevlar, and its mechanical properties are within the range of other reinforcements materials. Cellulose nanofiber can be a good material to reinforce some polymeric filament like polylactic acid (PLA) or acrylonitrile butadiene styrene (ABS).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Silva DDJ, D’Almeida MLO (2009) Nanocristais de celulose. O Papel 70(7):34–52

    Google Scholar 

  2. Tang J, Sisler J, Grishkewich N, Tam KC (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interf Sci 494:397–409

    Article  CAS  Google Scholar 

  3. Taipina MO (2012) Nanocristais de celulose: obtenção, caracterização e modificação de superfície. Dissertação de Mestrado. Universidade Estadual de Campinas. Instituto de Química, Campinas, São Paulo

    Google Scholar 

  4. Moon RJ, Martini A, Nairn J, Simonsens J, Youngblood J (2011) Cellulose nanomaterials review; structura, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  5. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576

    Article  CAS  Google Scholar 

  6. Dufresne A (2015) Nanoparticles from renewable resources: extraction and applications. São Carlos

    Google Scholar 

  7. Teodoro KBR, Teixeira EDM, Corrêa AC (2011) Whiskers de fibra de sisal obtidos sob diferentes condições de hidrólise ácida: Efeito do tempo e da temperatura de extração. Polímeros 21(4):280–285

    Article  CAS  Google Scholar 

  8. Teixeira EDM, Oliveira CRD, Mattoso LH (2010) Nanofibras de algodão obtidas sob diferentes condições de hidrólise ácida. Polímeros 20(4):264–268

    Article  CAS  Google Scholar 

  9. Segal L, Creely JJ, Martin JAE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  10. Borisyak S, Garbarczyk J (2003) Applying the WAXS method to estimate the supermolecular structura of cellulose fibres after mercerisation. Fibres Text West Eur, 104–106

    Google Scholar 

  11. FSC (2014) Global FSC certificates: type and distribution. Bonn, Alemanha

    Google Scholar 

  12. Park S, Baker JO, Himmel ME, Parilla PA, Johson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels, 3–10

    Google Scholar 

  13. Mukwaya V, Yu W, Asad RA, Yagou HB (2015) An environmentally friendly method for the isolation of cellulose nano fibrils from banana rachis fibers. Text Res J

    Google Scholar 

  14. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  Google Scholar 

  15. Basch A, Lewin M (1973) The influence of fine structure on the pyrolysis of cellulose I: vacuum pyrolysis. J Polym Sci Polym Chem 11:3071–3093

    Article  CAS  Google Scholar 

  16. Broido A, Javier-Son AC, Barrall ED (1973) Molecular weight decrease in the early pyrolysis of crystalline and amorphous cellulose. J Appl Polym Sci 17:3627–3635

    Article  Google Scholar 

  17. Kim UJ, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95:778–781

    Article  CAS  Google Scholar 

  18. Keplinger T, Wang X, Burgert I (2019) Nanofibrillated cellulose composites and wood derived scaffolds for functional materials. J Mater Chem A 7:2981–2992

    Article  CAS  Google Scholar 

  19. Flauzino Neto WP, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agroindustrial residue—soy hulls. Ind Crops Prod 42:480–488

    Article  CAS  Google Scholar 

  20. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Figueiredo Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanchez, M., Spinoza, J.A., Miranda, L.F. (2020). A New Method to Obtain Cellulose Nanofiber from Wood. In: Li, J., et al. Characterization of Minerals, Metals, and Materials 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36628-5_37

Download citation

Publish with us

Policies and ethics