Skip to main content

Effects of Sintering Temperature and Time on Preparation of Refractory Materials from Ferronickel Slag Under Microwave Irradiation

  • Conference paper
  • First Online:
Characterization of Minerals, Metals, and Materials 2020

Abstract

Ferronickel slag can be used for refractory material production by sintering it with the addition of sintered magnesia in the microwave field. In this study, the influence of microwave sintering temperature and time on the refractoriness and mechanical properties of refractory material was assessed based on determination of the phase transformations and microstructural evolutions of the materials obtained at different sintering temperatures and time. It was shown that a high-quality refractory material with refractoriness of 1730 ℃ was obtained when the sample was sintered at 1350 ℃ for 20 min. The findings can be used for developing an efficient approach for utilization of ferronickel slag and other related industrial wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim H, Lee CH, Ann KY (2019) Feasibility of ferronickel slag powder for cementitious binder in concrete mix. Constr Build Mater 207:693–705

    Article  CAS  Google Scholar 

  2. Huang Y, Wang Q, Shi M (2017) Characteristics and reactivity of ferronickel slag powder. Constr Build Mater 156:773–789

    Article  CAS  Google Scholar 

  3. Gu F, Zhang Y, Peng Z, Su Z, Tang H, Tian W, Liang G, Lee J, Rao M, Li G, Tao Jiang T (2019) Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching. J Hazard Mater 374:83–91

    Article  CAS  Google Scholar 

  4. Wang D, Wang Q, Zhuang S, Yang J (2018) Evaluation of alkali-activated blast furnace ferronickel slag as a cementitious material: reaction mechanism, engineering properties and leaching behaviors. Constr Build Mater 188:860–873

    Article  CAS  Google Scholar 

  5. Peng Z, Tang H, Augustine R, Lee J, Tian W, Chen Y, Gu F, Zhang Y, Li G, Jiang T (2019) From ferronickel slag to value-added refractory materials: a microwave sintering strategy. Resour Conserv Recy 149:521–531

    Article  Google Scholar 

  6. Peng Z, Hwang JY (2015) Microwave-assisted metallurgy. Int Mater Rev 60(1):30–63

    Article  CAS  Google Scholar 

  7. Zuo F, Saunier S, Marinel S, Chanin-Lambert P, Peillon N, Goeurio D (2015) Investigation of the mechanism(s) controlling microwave sintering of α-alumina: influence of the powder parameters on the grain growth, thermodynamics and densification kinetics. J Eur Ceram Soc 35:959–970

    Article  CAS  Google Scholar 

  8. Ganesha I, Bhattacharjee S, Saha BP, Johnson R, Rajeshwari K, Sengupta R, Ramana Rao MV, Mahajan YR (2002) An efficient MgAl2O4 spinel additive for improved slag erosion and penetration resistance of high-Al2O3 and MgO-C refractories. Ceram Int 28:245–253

    Article  Google Scholar 

  9. Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloy Compd 494:175–189

    Article  CAS  Google Scholar 

  10. Zhao F, Ge T, Gao J, Chen L, Liu X (2018) Transient liquid phase diffusion process for porous mullite ceramics with excellent mechanical properties. Ceram Int 44:19123–19130

    Article  CAS  Google Scholar 

  11. Douy A (2002) Aqueous synthesis of forsterite (Mg2SiO4) and enstatite (MgSiO3). J Sol-Gel Sci Techn 24:221–228

    Article  CAS  Google Scholar 

  12. Sabri K, Rais A, Taibi K, Moreau M, Ouddane B, Addou A (2016) Structural Rietveld refinement and vibrational study of MgCrxFe2-xO4 spinel ferrites. Physica B 501:38–44

    Article  CAS  Google Scholar 

  13. Zakaria AKM, Nesa F, Saeed KMA, Datta TK, Aktar S, Liba SI, Hossain S, Das AK, Kamal I, Yunus SM, Eriksson SG (2015) Cation distribution and crystallographic characterization of the spinel oxides MgCrxFe2-xO4 by neutron diffraction. J Alloy Compd 633:115–119

    Article  CAS  Google Scholar 

  14. Wilding MC, Benmore CJ, Tangeman JA, Sampath S (2004) Evidence of different structures in magnesium silicate liquids: coordination changes in forsterite to enstatite composition glasses. Chem Geol 213:281–291

    Article  CAS  Google Scholar 

  15. Upadhyaya A, Tiwari SK, Mishra P (2007) Microwave sintering of W-Ni-Fe alloy. Scripta Mater 56(1):5–8

    Article  CAS  Google Scholar 

  16. Panda SS, Singh V, Upadhyaya A, Agrawal D (2006) Sintering response of austenitic (316 L) and ferritic (434 L) stainless steel consolidated in conventional and microwave furnaces. Scripta Mater 54:2179–2183

    Article  CAS  Google Scholar 

  17. Madhan M, Prabhakaran G (2019) Microwave versus conventional sintering:microstructure and mechanical properties ofAl2O3-SiC ceramic composites. Bol Soc Esp Ceram Vidrio 58:14–22

    Article  Google Scholar 

  18. Zhao F, Zhang L, Ren Z, Gao J, Chen X, Liu X, Ge T (2019) A novel and green preparation of porous forsterite ceramics with excellent thermal isolation properties. Ceram Int 45:2953–2961

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grants 51774337, 51504297, and 51811530108, the Science and Technology Planning Project of Hunan Province, China, under Grant 2019RS2008, the Key Laboratory for Solid Waste Management and Environment Safety (Tsinghua University) Open Fund under Grant SWMES2017-04, the Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials under Grant 17kffk11, and the Fundamental Research Funds for the Central Universities of Central South University under Grants 2018zzts779 and 2018zzts220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, H. et al. (2020). Effects of Sintering Temperature and Time on Preparation of Refractory Materials from Ferronickel Slag Under Microwave Irradiation. In: Li, J., et al. Characterization of Minerals, Metals, and Materials 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36628-5_2

Download citation

Publish with us

Policies and ethics