Skip to main content

Cluster Modeling of Lindley Process with Application to Queuing

  • Conference paper
  • First Online:
Distributed Computer and Communication Networks (DCCN 2019)

Abstract

We investigate clusters of extremes defined as subsequent exceedances of high thresholds in a Lindley process. The latter is usually used to model the waiting time or the length of a queue in queuing systems. Distributions of the cluster and inter-cluster sizes of the Lindley process are obtained for a given value of the threshold assuming that the process begins from the zero value. An example of a M/M/1 queue and the impact of service and arrival rates on the cluster and inter-cluster distributions are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The latter theorem is valid for a process with \(\theta =0\) not necessarily the Lindley one irrespective on its stationary distribution and under specific mixing conditions.

References

  1. Asmussen, S.: Subexponential asymptotics for stochastic processes: extremal behavior, stationary distributions and first passage probabilities. Ann. Appl. Probab. 8, 354–374 (1998)

    Article  MathSciNet  Google Scholar 

  2. Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, New York (2003). https://doi.org/10.1007/b97236

    Book  MATH  Google Scholar 

  3. Bacro, J.-N., Daudin, J.-J., Mercier, S., Robin, S.: Back to the local score in the logarithmic case: a direct and simple proof. Ann. Inst. Stat. Math. 54(4), 748–757 (2002)

    Article  MathSciNet  Google Scholar 

  4. O’Brien, G.L.: Extreme values for stationary and Markov sequences. Ann. Probab. 15(1), 281–291 (1987)

    Article  MathSciNet  Google Scholar 

  5. Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J.: Statistics of Extremes: Theory and Applications. Wiley, Chichester (2004)

    Book  Google Scholar 

  6. Ferro, C.A.T., Segers, J.: Inference for clusters of extreme values. J. Roy. Stat. Soc. Ser. B 65, 545–556 (2003)

    Article  MathSciNet  Google Scholar 

  7. Hooghiemstra, G., Meester, L.E.: Computing the extremal index of special Markov chains and queues. Stoch. Process. Appl. 65(2), 171–185 (1996)

    Article  MathSciNet  Google Scholar 

  8. Hyytiä, E., Righter, R., Virtamo, J.: Meeting soft deadlines in single-and multi-server systems. In: Proceedings of 28th International Teletraffic Congress (ITC 28), Würzburg, Germany, pp. 166–174 (2016). https://doi.org/10.1109/ITC-28.2016.129

  9. Leadbetter, M.R., Lingren, G., Rootzén, H.: Extremes and Related Properties of Random Sequence and Processes. Springer, Heidelberg (1983). https://doi.org/10.1007/978-1-4612-5449-2

    Book  Google Scholar 

  10. Markovich, N.M.: Modeling clusters of extreme values. Extremes 17(1), 97–125 (2014)

    Article  MathSciNet  Google Scholar 

  11. Markovich, N.M.: Erratum to: modeling clusters of extreme values. Extremes 19(1), 139–142 (2016)

    Article  MathSciNet  Google Scholar 

  12. Markovich, N.M.: Clusters of extremes: modeling and examples. Extremes 20(3), 519–538 (2017)

    Article  MathSciNet  Google Scholar 

  13. Rootzén, H.: Maxima and exceedances of stationary Markov chains. Adv. Appl. Prob. 20, 371–390 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The reported study was funded by RFBR, project number 19-01-00090 (recipient N. Markovich, conceptualization, mathematical model development, methodology development).The reported study was funded by RFBR, project number 17-07-00142 (recipient R. Razumchik, formal/numerical analysis, validation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Markovich .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof

The expression for \(E(T_2(x_{\rho }))\) (formula (15)) follows from the application of the generating function method. Let us denote by \(\mathcal {C}(z)\) — the probability generating function of Catalan numbers \(C_j\), i.e. \(\mathcal {C}(z)=\sum _{j=0}^\infty C_j z^j\), \(0<z<1/4\). It is known that \(\mathcal {C}(z)={1-\sqrt{1-4z}\over 2z}\). Since \(\mathcal {C}(z)\) satisfies the functional equation \(\mathcal {C}(z)=1+z \mathcal {C}(z)^2\), the derivative of \(\mathcal {C}(z)\) is equal to \(\mathcal {C}'(z)={\mathcal {C}(z)^2 \over 1 - 2 z \mathcal {C}(z)}\). Thus the value of \(E(T_2(x_\rho ))\) is equal to

$$\begin{aligned} E(T_2(x_\rho ))= & {} \sum _{j=2}^\infty j P\{T_2(x_\rho )=j\} = \sum _{j=2}^\infty j C_{j-1} \frac{\rho ^{j-3}(1-\rho ^2)}{(1+\rho )^{2j}}\left( 1- \rho \ln \left( {1-\rho ^2\over \rho }\right) \right) \\= & {} \sum _{j=1}^\infty (j+1) C_{j} \frac{\rho ^{j-2}(1-\rho ^2)}{(1+\rho )^{2(j+1)}}\left( 1- \rho \ln \left( {1-\rho ^2\over \rho }\right) \right) \\= & {} \frac{(1-\rho ^2)}{\rho ^2(1+\rho )^{2}} \left( 1- \rho \ln \left( {1-\rho ^2\over \rho }\right) \right) \\\times & {} \left( \underbrace{ \sum _{j=1}^\infty C_{j} [{\rho \over (1+\rho )^2}]^{j} }_{=\mathcal {C}\left( \frac{\rho }{(1+\rho )^{2}} \right) -1} + {\rho \over (1+\rho )^2} \underbrace{\sum _{j=1}^\infty jC_{j} [{\rho \over (1+\rho )^2}]^{j-1} }_{=\mathcal {C}'\left( \frac{\rho }{(1+\rho )^{2}} \right) } \right) . \end{aligned}$$

Now we have

$$\begin{aligned} \mathcal {C} \left( \frac{\rho }{(1+\rho )^{2}} \right) -1= & {} {1-\sqrt{1-4\frac{\rho }{(1+\rho )^{2}}}\over 2\frac{\rho }{(1+\rho )^{2}}}-1 = {1- {1 \over 1+\rho } \sqrt{1 + 2\rho + \rho ^2 - 4 \rho } \over 2\frac{\rho }{(1+\rho )^{2}}}-1 \\= & {} {(1+\rho )^{2}- (1+\rho ) \sqrt{(1 - \rho )^2} \over 2 \rho }-1 = {2 \rho ^2 + 2 \rho \over 2 \rho }-1 = \rho . \end{aligned}$$

We also have

$$\begin{aligned} \mathcal {C}'\left( \frac{\rho }{(1+\rho )^{2}} \right)= & {} {\mathcal {C}\left( \frac{\rho }{(1+\rho )^{2}} \right) ^2 \over 1 - 2 \frac{\rho }{(1+\rho )^{2}} \mathcal {C}\left( \frac{\rho }{(1+\rho )^{2}} \right) } = {(1+\rho )^2 \over 1 - 2 \frac{\rho }{(1+\rho )^{2}} (1+\rho )} = {(1+\rho )^3 \over 1 - \rho }. \end{aligned}$$

By putting everything together, we obtain

$$\begin{aligned} E(T_2(x_\rho ))= & {} \frac{(1-\rho ^2)}{\rho ^2(1+\rho )^{2}} \left( 1- \rho \ln \left( {1-\rho ^2\over \rho }\right) \right) \left[ \rho + {\rho \over (1+\rho )^2} {(1+\rho )^3 \over 1 - \rho } \right] \\= & {} \frac{(1-\rho ^2)}{\rho (1+\rho )^{2}} \left( 1- \rho \ln \left( {1-\rho ^2\over \rho }\right) \right) \left[ 1 + {1+\rho \over 1 - \rho } \right] \\= & {} \frac{2}{\rho (1+\rho )} \left( 1- \rho \ln \left( {1-\rho ^2\over \rho }\right) \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Markovich, N., Razumchik, R. (2019). Cluster Modeling of Lindley Process with Application to Queuing. In: Vishnevskiy, V., Samouylov, K., Kozyrev, D. (eds) Distributed Computer and Communication Networks. DCCN 2019. Lecture Notes in Computer Science(), vol 11965. Springer, Cham. https://doi.org/10.1007/978-3-030-36614-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36614-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36613-1

  • Online ISBN: 978-3-030-36614-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics