Skip to main content

Silkworm: A Unique Creature for Natural Products

  • Chapter
  • First Online:
Natural Materials and Products from Insects: Chemistry and Applications

Abstract

Insects are an exemplary source of natural products. However, still they are considered a marginalized source of natural products, although their number is sizable, and have great pharmacological potential of natural products when compared to another group of animals. Among beneficial insects, silkworms and their by-products have emerged as the most valuable creatures due to their incredible medicinal properties and other usages. Apart from production of silk, silkworms are being utilized in several ways, such as a source of nutrients for human consumption, as cattle feed, as an antipollutant, used in the manufacturing of vaccines, and as a bioreactors for the production of recombinant proteins. Further, silkworm pupae, pupal powder, and pupal oil have shown spectacular biological activities such as neuroprotective, antidiabetic, hypolipidemic, antioxidant, anticancer, and antibacterial. This chapter summarizes the usages of silkworms and their by-products with their chemical constituents, proven biological activities, biomedical and pharmaceutical application of silkworm, and their by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn MY, Shim SH, Jeong HK, Ryu KS (2008) Purification of a dimethyladenosine compound from silkworm pupae as a vasorelaxation substance. J Ethnopharmacol 117:115–122

    Article  CAS  PubMed  Google Scholar 

  • Bodenheimer FS (1951) Insects as human food. W. Junk, The Hague, p 1951

    Book  Google Scholar 

  • Buhroo ZI, Bhat MA, Kamili AS, Ganai NA, Bali GK, Khan IL, Aziz A (2018) Trends in development and utilization of sericulture resources for diversification and value addition. J Entomol Zool Stud 6(4):601–615

    Google Scholar 

  • Chamberland JP, Moon HS (2014) Down-regulation of malignant potential by alpha linolenic acid in human and mouse colon cancer cells. Fam Cancer

    Google Scholar 

  • Chukiatsiri S, Hangtrakul W (2018) Biological activities of protein extracts from silkworm pupae against non-communicable disease. In: The 6th international conference on biochemistry and molecular biology, 1–11

    Google Scholar 

  • Dai J, Shen J, Pan W, Shen S, Undurti ND (2013) Effects of polyunsaturated fatty acids on the growth of gastric cancer cells in vitro. Lipid Heal Dis 12:71

    Article  CAS  Google Scholar 

  • Datta RK (1994) Silkworms to produce human vaccine. Ind Silk 33:33–35

    Google Scholar 

  • Deshpande R, Mansara P, Suryavanshi S, Ghanekar RK (2013) Alpha-linolenic acid regulates the growth of breast and cervical cancer cell lines through regulation of NO release and induction of lipid peroxidation. J Mol Biochem 2:6–17

    CAS  Google Scholar 

  • Dev P, Ramappa VK, Gopal R, Sangeeta (2017) Analysis of the chemical composition of mulberry silkworm pupal oil with Fourier transforms infrared spectroscopy (FTIR), gas chromatography spectrometry (GCMS) and its antimicrobial property. Asian J Agri Res 11(4):108–115

    CAS  Google Scholar 

  • Dutta RN, Majumdar SK, Kar R, Bajpai AK (2010) Incense stick from silkworm excreta. Indian Silk, p 13

    Google Scholar 

  • Gallo MBC, Sarachine MJ (2009) Biological activities of lupeol. Int J Biomed Pharm Sci 3(Special Issue 1):46–66

    Google Scholar 

  • Gavia MH, Couto RC, Oyama LM et al (2003) Diets rich in polyunsaturated fatty acids effects on hepatic metabolism in rats. Nutri 19:144–149

    Article  CAS  Google Scholar 

  • Gui Z, Zhuang D (2000) Study on the silkworm powder and its physiological functions. China Sericult 2(5):53–54

    Google Scholar 

  • Imai K, Sugiura K, Komiya T, Yamashita O (1996) Isolation and partial structure of a unique lipophilic peptide, VAPpeptide from the heads of male silkworm moths. Biosci Biotech Biochem 60:355–357

    Article  CAS  Google Scholar 

  • Iyengar, MNS (2007) Indian Silk, p 15

    Google Scholar 

  • Iyengar MNS (2010) Development of special purpose silks. Indian Silk, p 18

    Google Scholar 

  • Ji SD, Kim NS, Kweon HY, Choi BH, Kim KY, Koh YH (2016) Nutrition composition differences among steamed and freeze-dried mature silkworm larval powders made from 3 Bombyx mori varieties weaving different colored cocoons. Int J Indust Entomol 33(1):6–14

    Article  Google Scholar 

  • Jian C, Xiang-Fu W, Zhou Z (2006) Expression, purification, and characterization of human GM-CSF using silkworm pupae (Bombyx mori) as a bioreactor. J Biotech 123:236–247

    Google Scholar 

  • Joy O, Gopinathan KP (1994) Expression of microinjected foreign DNA in silkworm, Bombyx mori. Curr Sci 66(2):145–150

    Google Scholar 

  • Kawasaki H, Sato H, Suzuki M (1970) Structural proteins in the silkworm egg-shells. Insect Biochem:130–148

    Google Scholar 

  • Kunz RI, Brancalhao RMC, Fatima LD, Ribeiro C, Maria Raquel MarcalNatali MRM (2016) Silkworm sericin: properties and biomedical applications. Biomed Res Int. 19 pages

    Google Scholar 

  • Kwon MG, Kim DS, Lee JH, Park SW, Choo YK, Han YS, Kim JS, Hwang KA, Kinarm K, Kisung KO (2012) Isolation and analysis of natural compounds from silkworm pupae and effect of its extracts on alcohol detoxification. Entomolog Res 42(1):55–62

    Article  CAS  Google Scholar 

  • Lawrence BD (2014) Processing of Bombyx mori silk for biomedical application. In: Silk biomaterials for the tissue engineering and regenerative medicine, pp 78–99

    Chapter  Google Scholar 

  • Liu J, Rajendram R, Zhang L (2010) Chapter 158: Effects of oloeanolic acid and maslinic acid on glucose and lipid metabolism: implications for the beneficial effects of olive oil on health. In: Olives and olive oil in health and disease prevention, pp 1423–1429

    Chapter  Google Scholar 

  • Łochynska M, Frankowski J (2018) The biogas production potential from silkworm waste. Waste Manag 79:564–570

    Article  CAS  PubMed  Google Scholar 

  • Longvah T, Manghtya K, Qadri SSYH (2012) Eri silkworm: a source of edible oil with a high content of α- linolenic acid and of significant nutritional value. J Sci Food Agric 92:1988–1993

    Article  CAS  PubMed  Google Scholar 

  • Mahesh DS, Vidharthi BS, Narayanswamy TK, Subbarayappa CT, Muthuraju R, Shrushti P (2015) Bionutritional Science of Silkworm Pupal residue to Mine new ways for utilization. Int J Adv Res Biol Sci 2(9):135–140

    CAS  Google Scholar 

  • Mark Index, 11th Edition, 9506

    Google Scholar 

  • Matsuda S, Nerome R, Maegawa K, Kotaki A, Sugita S, Kawasaki K, Kuroda K, Yamaguchi R, Takasaki T, Nerome K (2017) Development of a Japanese encephalitis virus-like particle vaccine in silk worms using codon-optimised prM and envelope genes. Heliyon:1–7

    Google Scholar 

  • Muhammad FM, Ahsan M, Abdul W (2018) Quercetin – a mini review. Mod Concep Dev Agrono:1–5

    Google Scholar 

  • Nazim N, Buhroo ZI, Mushtaq N, Javid K, Rasool S, Mir GM (2017) Medicinal values of products and by products of sericulture. J Pharma Phytochem 6(5):1388–1392

    CAS  Google Scholar 

  • Nerome K, Kuroda K, Sugita S, Kawasaki K, Iinuma H, Nerome SMR (2015) The usefulness of an influenza Virus-Like Particle (VLP) vaccine produced in silkworm pupae and virosomes and liposomes prepared by chemical means: from Virosome to VLP and the future of vaccines. J Gastrointestinal Diges Syst 5(1):1–7

    Google Scholar 

  • Olumuyiwa T, Omotoso TO (2015) An evaluation of the nutrients and some anti-nutrients in silkworm, Bombyx mori L. (Bombycidae: Lepidoptera). Jordan J Biol Sci 8(1):45–50

    Article  Google Scholar 

  • Pachiappan P, Mohaneaj P, Thangamalar CAA (2016) In vitro evaluation of the antioxidant activity of bioproducts extracted from silkworm pupae. Environ We Int J Sci Tech 11:33–39

    Google Scholar 

  • Paulino AT, Simionato JI, Garcia JC, Nozaki J (2006) Characterization of chitosan and chitin produced from silkworm chrysalides. Carbohydrate Poly 64:98–103

    Article  CAS  Google Scholar 

  • Priyadarshini P, Maria Joncy M, Saratha AM (2017) Industrial utilization of silkworm pupae – a review. J Int Acad Res Multidis 5:2320–5083

    Google Scholar 

  • Rahmasari R, Sumiati, Astuti DA (2014) The effects of silkworm pupae (Bombyx mori) meal to substitute fish meal on production and physical quantity of quail eggs (Cortunixcortunix japonica). Indonesian Trop Anim Agric 39(3):180–187

    Google Scholar 

  • Rajakumar S, Chikkanna, Bindroo BB (2014) Food and medicinal values in “silkworm” and its host plant “Mulberry”-exploring new horizons. Int J Food Nutr Sci 3(1):124–130

    Google Scholar 

  • Ramakanth, Raman KVA (1997) Cocoon Pelade for better health. Ind Silk 35:35

    Google Scholar 

  • Ramappa VK, Dev P, Kumar Y (2017) Silkworm pupal oil: a novel source of omega-3 fatty acid. Ind Silk 7-8:24–25

    Google Scholar 

  • Rao UP (1994) Chemical composition and nutritional evaluation of spent silk worm pupae. J Agric Food Chem 42:2201–2203

    Article  CAS  Google Scholar 

  • Rattana S, Katisart T, Sungthong B, Butiman C (2017) Pharmacogn J. Acute and sub-acute toxicities of Thai silkworm powder (Bombyx mori Linn.) from three races in male wistar rats and In vitro antioxidant activities. Pharmacogn J 9(4):541–545

    Google Scholar 

  • Ryu SP (2014) Silkworm pupae powder ingestion increases fat metabolism in swim-trained rats. J Exerc Nutr Biochem 18(2):141–149

    Article  Google Scholar 

  • Ryu KS, Lee HS, Choue RW (1997) An activity of lowering blood-glucose levels according to preparative condition of silkworm powder. Korean J Sericulture Sci:39–79

    Google Scholar 

  • Simionato JI, Paulino AT, Garcia JC, Nozaki J (2006) Adsoption of Aluminium from waste water by chitin and chitosan produced from silkworm chrysalides. Polym Int 55:1243–1248

    Article  CAS  Google Scholar 

  • Simionato JI, Villalobos LDG, Bulla MK, Augusto F, Coro G, Garcia JC (2014) Application of chitin and chitosan extracted from silkworm chrysalides in the treatment of textile effluents contaminated with remazoldye. ActaScientiarium 36:693–698

    Google Scholar 

  • Singh KP, Jayasomu RS (2002) Bombyx mori – A review of its potential as a medicinal insect. Pharmaceutical Biol 40(1):28–32

    Google Scholar 

  • Soumya M, Harinatha AR, Nageswari G, Venkatappa B (2017) Silkworm (Bombyx mori) and its constituents: A fascinating insect in science and research. J Entomol Zool Stud 5(5):1701–1705

    Google Scholar 

  • Sravan GK, Das UN (1997) Cytotoxic action of alpha-Linolenic acid and eicosapantanoic acids on myeloma cells in vitro. Prostaglandin Leukot Essent Fatty Acids 56(4):285–293

    Article  Google Scholar 

  • Suresh HN, Mahalingam CA, Pallavi (2012) Amount of chitin, chitosan and chitosan based on chitin weight in pure races of multivoltine and bivoltine silkworm pupae Bombyx mori L. Int J Sci Nature 3(1):214–216

    CAS  Google Scholar 

  • Terada S, Nishimura T, Sasaki M, Yamada H, Miki M (2002) Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology 40:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomotake H, Katagiri M, Yamato M (2010) Silkworm pupae (Bombyx mori) are a new source of high-quality protein and lipid. J Nutr Sci Vitaminol 56:446–448

    Article  CAS  PubMed  Google Scholar 

  • Tulp M, Bohlin L (2004) Unconventional natural sources for future drug discovery. Drug Discov Today 9:450–458

    Article  CAS  PubMed  Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Maharajan RT (2009) Oxidative stress and neurodenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayakumar RS (1996) Sericulture By-products of China. Ind Silk 34:19

    Google Scholar 

  • Vimolmankang S, Somkhanngeon C, Sukrong S, Mai C (2014) Potential pharmaceutical uses of the isolated Compounds from silkworm excreta. J Sci 41(1):97–104

    Google Scholar 

  • Wattanathorn J, Muchimapura S, Boosel A, Kongpa S, Kaewrueng W, Un TT, Wannanon P, Thukhamee W (2012) Silkworm pupae protect against Alzheimer’s disease. Am J Agri Biol Sci 7(3):330–336

    Article  Google Scholar 

  • Wilt T, Ishani A, MacDonald R, Stark G, Mulrow C, Lau J (2000) Beta-sitostreols for benign prostatic hyperplasia. Cochrane Lib (2):CD001043

    Google Scholar 

  • Xia B, Li Z, Ding Y (1989) Properties of the ultraviolet spectrum of domestic silkworm chorionins. CanyeKexue 15:45–48

    CAS  Google Scholar 

  • Yellamma K (2018) Metabolic turnover of carbohydrates during pupal-adult transition stage in the silk worm, Bombyx mori. Int J Dev Res 8(1):18164–18170

    Google Scholar 

  • Young IS, Woodside (2001) Antioxidants in health and disease. J Clin Pathol 54:176–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Lin Y, Shen G, Tan X, Lei C, Long W, Liu H, Zhang Y, Xu Y, Wu J, Gu J (2017) Pigmentary analysis of eggs of the silkworm Bombyx mori. J Insect Physiol 101:142–150

    Google Scholar 

  • Zhao HP, Feng XQ, Cui WZ, Zou FZ (2007) Mechanical properties of silkworm cocoon pelades. Eng Frac Mech 74:1953–1962

    Article  Google Scholar 

  • Zheng T, Su S, Dai X, Zhang L, Duan JA, Yang ZO (2018) Metabolomic analysis of biochemical changes in the serum and urine of freund’s adjuvant-induced arthritis in rats after treatment with silkworm excrement. Molecules 23:1490

    Article  CAS  PubMed Central  Google Scholar 

  • Zou J, Han D (2006) Proximate, amino acid and mineral composition of pupae of the silkworm Antheraea pernyi. J Food Comp Anal:850–853

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venkatesh Kumar, R., Srivastava, D. (2020). Silkworm: A Unique Creature for Natural Products. In: Kumar, D., Shahid, M. (eds) Natural Materials and Products from Insects: Chemistry and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36610-0_6

Download citation

Publish with us

Policies and ethics