Skip to main content

Silk: An Amazing Biomaterial for Future Medication

  • Chapter
  • First Online:
Natural Materials and Products from Insects: Chemistry and Applications

Abstract

Silk is one of the famous natural materials since ancient time due to its elegance and diverse applications. Two key proteins are hydrophilic: sericin and hydrophobic fibroin. It has unique properties like biodegradation, oxidation resistance, antibacterial and UV resistance which attract researchers. The variety of silk proteins has helped in the development of novel biomaterials and successful functioning in the treatment of various diseases. Silk proteins play an important role in the development of human tissues, skin development, regeneration of eye lenses, intervertebral disc, stem cells, nerve cells, ligament and biocompatible implants for sleep disc including anticancerous stuff. In the future, we can see more silk and its proteins based highly on advanced engineered biomaterials for the biomedical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi T, Tomita M, Shimizu K, Ogawa S, Yoshizato K (2006) Generation of hybrid transgenic silkworms that express Bombyx mori prolyl-hydroxylase α-subunits and human collagens in posterior silk glands: production of cocoons that contained collagens with hydroxylated proline residues. J Biotechnol 126(2):205–219

    Article  CAS  PubMed  Google Scholar 

  • Aibibu D, Hild M, Cherif C (2016) An overview of braiding structure in medical textile: fiber-based implants and tissue engineering. In: Advances in braiding technology. Woodhead Publishing, pp 171–190

    Google Scholar 

  • Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416

    Article  CAS  PubMed  Google Scholar 

  • Aramwit P, Sangcakul A (2007) The effects of sericin cream on wound healing in rats. Biosci Biotechnol Biochem 71(10):2473–2477

    Article  CAS  PubMed  Google Scholar 

  • Cassinelli C, Cascardo G, Morra M, Draghi L, Motta A, Catapano G (2006) Physical-chemical and biological characterization of silk fibroin-coated porous membranes for medical applications. Int J Artif Organs 29(9):881

    CAS  PubMed  Google Scholar 

  • Catto V, Farè S, Cattaneo I, Figliuzzi M, Alessandrino A, Freddi G, Remuzzi A, Tanzi MC (2015) Small diameter electrospun silk fibroin vascular grafts: mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Mater Sci Eng C 54:101–111

    Article  CAS  Google Scholar 

  • Chouhan D, Chakraborty B, Nandi SK, Mandal BB (2017) Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomater 48:157–174

    Article  CAS  PubMed  Google Scholar 

  • De Vos WM (2015) Microbial biofilms and the human intestinal microbiome. NPJ Biofilms Microbiomes 1:15005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeBari MK, Abbott RD (2019) Microscopic considerations for optimizing silk biomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11(2):e1534

    Article  PubMed  CAS  Google Scholar 

  • Farokhi M, Mottaghitalab F, Samani S, Shokrgozar MA, Kundu SC, Reis RL, Fatahi Y, Kaplan DL (2018) Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv 36(1):68–91

    Article  CAS  PubMed  Google Scholar 

  • Freddi G, Mossotti R, Innocenti R (2003) Degumming of silk fabric with several proteases. J Biotechnol 106(1):101–112

    Article  CAS  PubMed  Google Scholar 

  • Gauthier N, Mandon N, Renault S, Benedet F (2004) The Acrolepiopsis assectella silk cocoon: kairomonal function and chemical characterisation. J Insect Physiol 50(11):1065–1074

    Google Scholar 

  • Gulrajani ML, Arora S, Aggarwal S (1997) Degummase treatment of spun silk fabric. Indian J Fibre Textile Res 22(2):119–123

    CAS  Google Scholar 

  • Guziewicz NA, Massetti AJ, Perez-Ramirez BJ, Kaplan DL (2013) Mechanisms of monoclonal antibody stabilization and release from silk biomaterials. Biomaterials 34(31):7766–7775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy JG, Scheibel TR (2009) Silk-inspired polymers and proteins. Biochem Soc Trans 37(4):677–681

    Article  CAS  PubMed  Google Scholar 

  • Haupt J, García-López JM, Chope K (2015) Use of a novel silk mesh for ventral midline hernioplasty in a mare. BMC Vet Res 11(1):58

    Article  PubMed  PubMed Central  Google Scholar 

  • Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH (2005) In vitro degradation of silk fibroin. Biomaterials 26(17):3385–3393

    Article  CAS  PubMed  Google Scholar 

  • Huby N, Vié V, Renault A, Beaufils S, Lefèvre T, Paquet-Mercier F, Pézolet M, Bêche B (2013) Native spider silk as a biological optical fiber. Appl Phys Lett 102(12):123702

    Article  CAS  Google Scholar 

  • Iizuka E, Hachimori A, Abe K, Sunohara M, Hiraide Y, Ueyama A, Kamo K, Fujiwara T, Nakamura F, Uno T (1983) Comparative study on the mechanical property of silk thread from cocoons of Bombyx mori L. Biorheology 20(5):459–470

    Article  CAS  PubMed  Google Scholar 

  • Inoue S, Kanda T, Imamura M, Quan GX, Kojima K, Tanaka H, Tomita M, Hino R, Yoshizato K, Mizuno S, Tamura T (2005) A fibroin secretion-deficient silkworm mutant, Nd-sD, provides an efficient system for producing recombinant proteins. Insect Biochem Mol Biol 35(1):51–59

    Article  CAS  PubMed  Google Scholar 

  • Janani G, Nandi SK, Mandal BB (2017) Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs. Acta Biomater 67:167–182

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Zhang S, Qian Z, Qin N, Song W, Sun L, Zhou Z, Shi Z, Chen L, Li X, Mao Y (2018) Protein bricks: 2D and 3D bio-nanostructures with shape and function on demand. Adv Mater 30(20):1705919

    Article  CAS  Google Scholar 

  • Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424(6952):1057

    Article  CAS  PubMed  Google Scholar 

  • Kaplan D, Adams WW, Farmer B, Viney C (eds) (1993) Silk polymers: materials science and biotechnology. American Chemical Society

    Google Scholar 

  • Kapoor S, Kundu SC (2016) Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater 31:17–32

    Article  CAS  PubMed  Google Scholar 

  • Kasoju N, Bora U (2012) Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications. Biomed Mater 7(4):045004

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Kim UJ, Vunjak-Novakovic G, Min BH, Kaplan DL (2005) Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Biomaterials 26(21):4442–4452

    Article  CAS  PubMed  Google Scholar 

  • Kludkiewicz B, Kodrík D, Grzelak K, Nirmala X, Sehnal F (2005) Structurally unique recombinant Kazal-type proteinase inhibitor retains activity when terminally extended and glycosylated. Protein Expr Purif 43(2):94–102

    Article  CAS  PubMed  Google Scholar 

  • Kundu B, Kurland NE, Bano S, Patra C, Engel FB, Yadavalli VK, Kundu SC (2014) Silk proteins for biomedical applications: bioengineering perspectives. Prog Polym Sci 39(2):251–267

    Article  CAS  Google Scholar 

  • Liu Y, Ling S, Wang S, Chen X, Shao Z (2014) Thixotropic silk nanofibril-based hydrogel with extracellular matrix-like structure. Biomater Sci 2(10):1338–1342

    Article  CAS  PubMed  Google Scholar 

  • MacIntosh AC, Kearns VR, Crawford A, Hatton PV (2008) Skeletal tissue engineering using silk biomaterials. J Tissue Eng Regen Med 2(2–3):71–80

    Article  CAS  PubMed  Google Scholar 

  • Marsh RE, Corey RB, Pauling L (1955) An investigation of the structure of silk fibroin. Biochim Biophys Acta 16:1–34

    Article  CAS  PubMed  Google Scholar 

  • Meinel L, Fajardo R, Hofmann S, Langer R, Chen J, Snyder B, Vunjak-Novakovic G, Kaplan D (2005a) Silk implants for the healing of critical size bone defects. Bone 37(5):688–698

    Article  CAS  PubMed  Google Scholar 

  • Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2005b) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2):147–155

    Article  CAS  PubMed  Google Scholar 

  • Mita K, Ichimura S, James TC (1994) Highly repetitive structure and its organization of the silk fibroin gene. J Mol Evol 38(6):583–592

    Article  CAS  PubMed  Google Scholar 

  • Mondal M (2007) The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn. A review. Caspian J Environ Sci 5(2):63–76

    Google Scholar 

  • Motta A, Fambri L, Migliaresi C (2002) Regenerated silk fibroin films: thermal and dynamic mechanical analysis. Macromol Chem Phys 203(10–11):1658–1665

    Article  CAS  Google Scholar 

  • Murphy AR, John PS, Kaplan DL (2008) Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 29(19):2829–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki Y, Kakehi S, Xu Y, Tsujimoto K, Sasaki M, Ogawa H, Kato N (2010) Consumption of sericin reduces serum lipids, ameliorates glucose tolerance and elevates serum adiponectin in rats fed a high-fat diet. Biosci Biotechnol Biochem 74(8):1534–1538

    Article  CAS  PubMed  Google Scholar 

  • Omenetto FG, Kaplan DL (2008) A new route for silk. Nat Photonics 2:641–643

    Article  CAS  Google Scholar 

  • Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329(5991):528–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda N, Bissoyi A, Pramanik K, Biswas A (2015) Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties. Mater Sci Eng C 48:521–532

    Article  CAS  Google Scholar 

  • Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine. Elsevier

    Google Scholar 

  • Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Lozano FJ, García-Bernal D, Aznar-Cervantes S, Ros-Roca MA, Algueró MC, Atucha NM, Lozano-García AA, Moraleda JM, Cenis JL (2014) Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells. J Mater Sci Mater Med 25(12):2731–2741

    Article  PubMed  CAS  Google Scholar 

  • Saric M, Scheibel T (2019) Engineering of silk proteins for materials applications. Curr Opin Biotechnol 60:213–220

    Article  CAS  PubMed  Google Scholar 

  • Seo CW, Um IC, Rico CW, Kang MY (2011) Antihyperlipidemic and body fat-lowering effects of silk proteins with different fibroin/sericin compositions in mice fed with high fat diet. J Agric Food Chem 59(8):4192–4197

    Article  CAS  PubMed  Google Scholar 

  • Shao Z, Vollrath F (2002) Materials: surprising strength of silkworm silk. Nature 418(6899):741

    Article  CAS  PubMed  Google Scholar 

  • Singh MK, Varun VK, Behera BK (2011) Cosmetotextiles: state of art. Fibers Text East Eur 19(4):27–33

    CAS  Google Scholar 

  • Sinohara H (1979) Glycopeptides isolated from sericin of the silkworm, Bombyx mori. Comp Biochem Physiol Part B Comp Biochem 63(1):87–91

    Article  Google Scholar 

  • Song C, Yang Z, Zhong M, Chen Z (2013) Sericin protects against diabetes-induced injuries in sciatic nerve and related nerve cells. Neural Regen Res 8(6):506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Inoue S, Mizuno S (1999) Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the HL complex of silk fibroin produced by Bombyx mori. Insect Biochem Mol Biol 29(3):269–276

    Article  CAS  PubMed  Google Scholar 

  • Tokutake S (1980) Isolation of the smallest component of silk protein. Biochem J 187(2):413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Totten JD, Wongpinyochit T, Carrola J, Duarte IF, Seib FP (2019) PEGylation-dependent metabolic rewiring of macrophages with silk fibroin nanoparticles. ACS Appl Mater Interfaces 11(16):14515–14525

    Article  CAS  PubMed  Google Scholar 

  • Tsukada M, Komoto T, Kawai T (1979) Confirmation of liquid silk sericin. Polym J 11(6):503

    Article  CAS  Google Scholar 

  • Vollrath F, Knight DP (2001) The liquid crystalline spinning of spider silk. Nature 410(6828):541

    Article  CAS  PubMed  Google Scholar 

  • Vollrath F, Porter D (2006) Spider silk as a model biomaterial. Appl Phys A 82(2):205–212

    Article  CAS  Google Scholar 

  • Vootla SK, Su CC, Masanakatti SI (2015) Self-assembled nanoparticles prepared from Tasar Antherea mylitta silk sericin. In: Biomedical applications of natural proteins. Springer, New Delhi, pp 65–77

    Chapter  Google Scholar 

  • Wang X, Zhang X, Castellot J, Herman I, Iafrati M, Kaplan DL (2008) Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses. Biomaterials 29(7):894–903

    Article  CAS  PubMed  Google Scholar 

  • Wongpanit P, Pornsunthorntawee O, Rujiravanit R (2012) Silk fiber composites. Natural polymers: composites. R Soc Chem, Cambridge, pp 219–222

    Book  Google Scholar 

  • Wongpinyochit T, Uhlmann P, Urquhart AJ, Seib FP (2015) PEGylated silk nanoparticles for anticancer drug delivery. Biomacromolecules 16(11):3712–3722

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Hou J, Li M, Wang J, Kaplan DL, Lu S (2012) Sodium dodecyl sulfate-induced rapid gelation of silk fibroin. Acta Biomater 8(6):2185–2192

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Wu F, Xing T, Yadavalli VK, Kundu SC, Lu S (2017) A silk fibroin hydrogel with reversible sol-gel transition. RSC Adv 7(39):24085–24096

    Article  Google Scholar 

  • Yukuhiro K, Kanda T, Tamura T (1997) Preferential codon usage and two types of repetitive motifs in the fibroin gene of the Chinese oak silkworm, Antheraea pernyi. Insect Mol Biol 6(1):89–95

    Google Scholar 

  • Zhang YQ (2002) Applications of natural silk protein sericin in biomaterials. Biotechnol Adv 20(2):91–100

    Article  CAS  PubMed  Google Scholar 

  • Zhao JG, Zhang YQ (2015) Inhibition of the flavonoid extract from silkworm cocoons on DMBA/UVB-induced skin damage and tumor promotion in BALB/c mice. Toxicol Res 4(4):1016–1024

    Article  CAS  Google Scholar 

  • Zhao HP, Feng XQ, Yu SW, Cui WZ, Zou FZ (2005) Mechanical properties of silkworm cocoons. Polymer 46(21):9192–9201

    Article  CAS  Google Scholar 

  • Zhao HP, Feng XQ, Cui WZ, Zou FZ (2007) Mechanical properties of silkworm cocoon pelades. Eng Fract Mech 74(12):1953–1962

    Article  Google Scholar 

  • Zhou CZ, Confalonieri F, Esnault C, Zivanovic Y, Jacquet M, Janin J, Perasso R, Li ZG, Duguet M (2003) The 62-kb upstream region of Bombyx mori fibroin heavy chain gene is clustered of repetitive elements and candidate matrix association regions. Gene 312:189–195

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are indebted to Dr. D.S. Kothari Fellowship, BSR, UGC, New Delhi, India (grant No.F.4-2/2006 (BSR)/BL/17-18/0549), for the financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, D., Shrivastava, S., Gong, C., Shukla, S. (2020). Silk: An Amazing Biomaterial for Future Medication. In: Kumar, D., Shahid, M. (eds) Natural Materials and Products from Insects: Chemistry and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36610-0_3

Download citation

Publish with us

Policies and ethics