Skip to main content

Abstract

Organs-on-chips, also known as “tissue chips” or microphysiological systems (MPS), are bioengineered microsystems capable of recreating aspects of human organ physiology and function and are in vitro tools with multiple applications in drug discovery and development. The ability to recapitulate human and animal tissues in physiologically relevant three-dimensional, multi-cellular environments allows applications in the drug development field, including; (1) use in assessing the safety and toxicity testing of potential therapeutics during early-stage preclinical drug development; (2) confirmation of drug/therapeutic efficacy in vitro; and (3) disease modeling of human tissues to recapitulate pathophysiology within specific subpopulations and even individuals, thereby advancing precision medicine efforts. This chapter will discuss the development and evolution of three-dimensional organ models over the past decade, and some of the opportunities offered by MPS technology that are not available through current standard two-dimensional cell cultures, or three-dimensional organoid systems. This chapter will outline future avenues of research in the MPS field, how cutting-edge biotechnology advances are expanding the applications for these systems, and discuss the current and future potential and challenges remaining for the field to address.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaci HE, Shuler ML (2015) Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling. Integr Biol 7(4):383–391

    Article  Google Scholar 

  • Abaci HE et al (2016) Human skin constructs with spatially controlled vasculature using primary and iPSC-derived endothelial cells. Adv Healthc Mater 5(14):1800–1807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agarwal A et al (2013) Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13(18):3599–3608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amor S et al (2010) Inflammation in neurodegenerative diseases. Immunology 129(2):154–169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • An F et al (2015) Organ-on-a-Chip: new platform for biological analysis. Anal Chem Insights 10:39–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arrowsmith J (2011a) Trial watch: phase II failures: 2008–2010. Nat Rev Drug Discov 10(5):328–329

    Article  PubMed  CAS  Google Scholar 

  • Arrowsmith J (2011b) Trial watch: phase III and submission failures: 2007–2010. Nat Rev Drug Discov 10(2):87–87

    Article  PubMed  CAS  Google Scholar 

  • Arslan SY et al (2015) Novel three dimensional human Endocervix cultures respond to 28-day hormone treatment. Endocrinology 156(4):1602–1609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Au SH et al (2014) Hepatic organoids for microfluidic drug screening. Lab Chip 14(17):3290–3299

    Article  PubMed  CAS  Google Scholar 

  • Awan Z, Genest J (2014) Inflammation modulation and cardiovascular disease prevention. Eur J Prev Cardiol 22(6):719–733

    Article  PubMed  Google Scholar 

  • Balls M (1995) Defining the role of ECVAM in the development, validation and acceptance of alternative tests and testing strategies. Toxicol In Vitro 9(6):863–869

    Article  PubMed  CAS  Google Scholar 

  • Biondi-Zoccai GGL et al (2003) Atherothrombosis, inflammation, and diabetes. J Am Coll Cardiol 41(7):1071–1077

    Article  PubMed  CAS  Google Scholar 

  • Brown JA et al (2015) Recreating blood-brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics 9(5):054124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown JA et al (2016) Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit. J Neuroinflammation 13(1):306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caballero D et al (2017) Organ-on-chip models of cancer metastasis for future personalized medicine: from chip to the patient. Biomaterials 149(Supplement C):98–115

    Article  PubMed  CAS  Google Scholar 

  • Casey W et al (2015) A new path forward: the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) and National Toxicology Program’s Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM). J Am Assoc Lab Anim Sci 54(2):170–173

    PubMed  PubMed Central  Google Scholar 

  • Chen T et al (2016) A drug-compatible and temperature-controlled microfluidic device for live-cell imaging. Open Biol 6(8):160156

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng CS et al (2016) Cell density and joint microRNA-133a and microRNA-696 inhibition enhance differentiation and contractile function of engineered human skeletal muscle tissues. Tissue Eng A 22(7–8):573–583

    Article  CAS  Google Scholar 

  • de Peppo GM et al (2013) Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci 110(21):8680–8685

    Article  PubMed  PubMed Central  Google Scholar 

  • Du G et al (2016) Microfluidics for cell-based high throughput screening platforms—a review. Anal Chim Acta 903(Supplement C):36–50

    Article  PubMed  CAS  Google Scholar 

  • Dutta D et al (2017) Disease Modeling in stem cell-derived 3D organoid systems. Trends Mol Med 23(5):393–410

    Article  PubMed  CAS  Google Scholar 

  • Esch EW et al (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14:248–260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Esch MB et al (2016) Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab Chip 16(14):2719–2729

    Article  PubMed  CAS  Google Scholar 

  • Fashe MM et al (2015) Species-specific differences in the in vitro metabolism of Lasiocarpine. Chem Res Toxicol 28(10):2034–2044

    Article  PubMed  CAS  Google Scholar 

  • Fernandez CE et al (2016) Human vascular microphysiological system for in vitro drug screening. Sci Rep 6:21579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foulke-Abel, J., et al. (2016). Human enteroids as a model of upper small intestinal ion transport physiology and pathophysiology. Gastroenterology 150(3): 638–649.e638

    Google Scholar 

  • Gan W et al (2004) Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax 59(7):574–580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groll J et al (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8(1):013001

    Article  PubMed  CAS  Google Scholar 

  • Guillouzo A (1998) Liver cell models in in vitro toxicology. Environ Health Perspect 106(Suppl 2):511–532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of Cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • He Y et al (2016) Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis 28(8):1658–1678

    Article  CAS  Google Scholar 

  • Henry OYF et al (2017) Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. Lab Chip 17(13):2264–2271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herland A et al (2016) Distinct contributions of astrocytes and Pericytes to Neuroinflammation identified in a 3D human blood-brain barrier on a Chip. PLoS One 11(3):e0150360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huh D et al (2010) Reconstituting organ-level lung functions on a Chip. Science 328(5986):1662–1668

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huh D et al (2012) A human disease model of drug toxicity–induced pulmonary Edema in a lung-on-a-Chip microdevice. Sci Trans Med 4(159):159ra147–159ra147

    Article  CAS  Google Scholar 

  • Jackson EL, Lu H (2016) Three-dimensional models for studying development and disease: moving on from organisms to organs-on-a-chip and organoids. Integr Biol Quant Biosci Nano Macro 8(6):672–683

    CAS  Google Scholar 

  • Jang K-J et al (2013) Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol 5(9):1119–1129

    Article  CAS  Google Scholar 

  • Jiang, Y., et al. (2018). Maturation of cardiomyocytes derived from human pluripotent stem cells: current strategies and limitations. Mol Cells 41(7):613–621

    Google Scholar 

  • Junaid A et al (2017) An end-user perspective on organ-on-a-chip: assays and usability aspects. Curr Opin Biomed Eng 1:15–22

    Article  Google Scholar 

  • Kanamori T et al (2018) Technical aspects of microphysiological systems (MPS) as a promising wet human-in-vivo simulator. Drug Metab Pharmacokinet 33(1):40–42

    Article  PubMed  CAS  Google Scholar 

  • Kawabori M, Yenari MA (2015) Inflammatory responses in brain ischemia. Curr Med Chem 22(10):1258–1277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim HJ et al (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12(12):2165–2174

    Article  PubMed  CAS  Google Scholar 

  • Kniazeva T et al (2011) A microfluidic respiratory assist device with high gas permeance for artificial lung applications. Biomed Microdevices 13(2):315–323

    Article  PubMed  CAS  Google Scholar 

  • Kolesky DB et al (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130

    Article  PubMed  CAS  Google Scholar 

  • Koutsouras DA et al (2017) Simultaneous monitoring of single cell and of micro-organ activity by PEDOT:PSS covered multi-electrode arrays. Mater Sci Eng C 81:84–89

    Article  CAS  Google Scholar 

  • Lancaster MA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Article  PubMed  CAS  Google Scholar 

  • Laronda MM et al (2013) Recreating the female reproductive tract in vitro using iPSC technology in a linked microfluidics environment. Stem Cell Res Ther 4(Suppl 1):S13–S13

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee-Montiel FT et al (2017) Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems. Exp Biol Med 242(16):1617–1632

    Article  CAS  Google Scholar 

  • Li AP et al (2012) Definition of metabolism-dependent xenobiotic toxicity with co-cultures of human hepatocytes and mouse 3T3 fibroblasts in the novel integrated discrete multiple organ co-culture (IdMOC) experimental system: results with model toxicants aflatoxin B1, cyclophosphamide and tamoxifen. Chem Biol Interact 199(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Li J et al (2016) Recent advances in bioprinting techniques: approaches, applications and future prospects. J Trans Med 14(1):271

    Article  CAS  Google Scholar 

  • Liu C et al (2018) Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development 145(5):dev156166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopes FM et al (2017) Mimicking Parkinson’s disease in a dish: merits and pitfalls of the most commonly used dopaminergic in vitro models. NeuroMolecular Med 19(2):241–255

    Article  PubMed  CAS  Google Scholar 

  • Lou Y-R, Leung AW (2018) Next generation organoids for biomedical research and applications. Biotechnol Adv 36(1):132–149

    Article  PubMed  CAS  Google Scholar 

  • Low LA, Tagle DA (2017a) Organs-on-chips: Progress, challenges, and future directions. Exp Biol Med (Maywood, NJ) 242(16):1573–1578

    Article  CAS  Google Scholar 

  • Low LA, Tagle DA (2017b) Tissue chips - innovative tools for drug development and disease modeling. Lab Chip 17(18):3026–3036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luan Q et al (2017) A microfluidic in-line ELISA for measuring secreted protein under perfusion. Biomed Microdevices 19(4):101

    Article  PubMed  PubMed Central  Google Scholar 

  • Madden L et al (2015) Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. elife 4:e04885

    Article  PubMed  PubMed Central  Google Scholar 

  • Maoz BM et al (2017) Organs-on-chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. Lab Chip 17(13):2294–2302

    Article  PubMed  CAS  Google Scholar 

  • Martin L et al (2017) How much do clinical trials cost? Nat Rev Drug Discov 16:381–382

    Article  PubMed  CAS  Google Scholar 

  • Marturano-Kruik A et al (2018) Biomechanical regulation of drug sensitivity in an engineered model of human tumor. Biomaterials 150:150–161

    Article  PubMed  CAS  Google Scholar 

  • Maschmeyer I et al (2015) A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15(12):2688–2699

    Article  PubMed  CAS  Google Scholar 

  • Materne E-M et al (2015) The multi-organ Chip - a microfluidic platform for long-term multi-tissue Coculture. J Vis Exp: JoVE 98:52526

    Google Scholar 

  • Mathur A et al (2015) Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep 5:8883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merkel TC et al (2000) Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J Polym Sci B Polym Phys 38(3):415–434

    Article  CAS  Google Scholar 

  • Morgan S et al (2011) The cost of drug development: a systematic review. Health Policy 100(1):4–17

    Article  PubMed  Google Scholar 

  • Moya ML et al (2013) In vitro perfused human capillary networks. Tissue Eng Part C Methods 19(9):730–737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niu N, Wang L (2015) In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics 16(3):273–285

    Article  PubMed  CAS  Google Scholar 

  • Nunes SS et al (2013) Biowire: a platform for maturation of human pluripotent stem cell–derived cardiomyocytes. Nat Methods 10:781–787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oleaga C et al (2016) Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep 6:20030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pournasr B, Duncan SA (2017) Modeling inborn errors of hepatic metabolism using induced pluripotent stem cells. Arterioscler Thromb Vasc Biol 37(11):1994–1999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Probst C et al (2018) High-throughput organ-on-a-chip systems: current status and remaining challenges. Curr Opin Biomed Eng 6:33–41

    Article  Google Scholar 

  • Profile Toolkit (2018) The Dynamic U.S. Research and Development Ecosystem. from https://http://www.phrma.org/industryprofile/2018/

  • Rebelo SP et al (2016) Validation of bioreactor and human-on-a-Chip devices for chemical safety assessment. Validation of alternative methods for toxicity testing. C. Eskes and M. Whelan. Springer, Cham, pp 299–316

    Google Scholar 

  • Riahi R et al (2016) Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers. Sci Rep 6:24598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roberts RA et al (2014) Reducing attrition in drug development: smart loading preclinical safety assessment. Drug Discov Today 19(3):341–347

    Article  PubMed  CAS  Google Scholar 

  • Ronaldson-Bouchard K et al (2018) Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556(7700):239–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakolish C et al (2018) Technology transfer of the microphysiological systems: a case study of the human proximal tubule tissue Chip. Sci Rep 8(1):14882–14882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sances S et al (2018) Human iPSC-derived endothelial cells and microengineered organ-Chip enhance neuronal development. Stem Cell Reports 10(4):1222–1236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasahara K et al (2015) Pharmacokinetics and metabolism of Delamanid, a novel anti-tuberculosis drug, in animals and humans: importance of albumin metabolism in vivo. Drug Metab Dispos 43(8):1267–1276

    Article  PubMed  CAS  Google Scholar 

  • Schimek K et al (2018) Bioengineering of a full-thickness skin equivalent in a 96-well insert format for substance permeation studies and organ-on-a-chip applications. Bioengineering 5(2)

    Google Scholar 

  • Shah P et al (2016) A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nat Commun 7:11535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shirure VS, George SC (2017) Design considerations to minimize the impact of drug absorption in polymer-based organ-on-a-chip platforms. Lab Chip 17:681–690

    Article  PubMed  CAS  Google Scholar 

  • Sin A et al (2004) The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol Prog 20(1):338–345

    Article  PubMed  CAS  Google Scholar 

  • Singh Dolt K et al (2017) Modeling Parkinson’s disease with induced pluripotent stem cells harboring α-synuclein mutations. Brain Pathol 27(4):545–551

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Skardal A et al (2017) Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep 7(1):8837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sobrino A et al (2016) 3D microtumors in vitro supported by perfused vascular networks. Sci Rep 6:31589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soto-Gutierrez A et al (2017) Pre-clinical and clinical investigations of metabolic zonation in liver diseases: the potential of microphysiology systems. Exp Biol Med 242(16):1605–1616

    Article  CAS  Google Scholar 

  • Stephenson J et al (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154(2):204–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun X, Nunes SS (2016) Biowire platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Methods 101:21–26

    Article  PubMed  CAS  Google Scholar 

  • Sutherland ML et al (2013) The national institutes of health microphysiological systems program focuses on a critical challenge in the drug discovery pipeline. Stem Cell Res Ther 4(1):1–5

    Article  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  • Takebe T et al (2015) Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell 16(5):556–565

    Article  PubMed  CAS  Google Scholar 

  • Takebe T et al (2017) Synergistic engineering: organoids meet organs-on-a-chip. Cell Stem Cell 21(3):297–300

    Article  PubMed  CAS  Google Scholar 

  • Tan W, Desai TA (2004) Layer-by-layer microfluidics for biomimetic three-dimensional structures. Biomaterials 25(7–8):1355–1364

    Article  PubMed  CAS  Google Scholar 

  • Tanataweethum N et al (2018) Establishment and characterization of a primary murine adipose tissue-chip. Biotechnol Bioeng 0(0)

    Google Scholar 

  • van der Helm MW et al (2017) Fabrication and validation of an organ-on-chip system with integrated electrodes to directly quantify transendothelial electrical resistance. JoVE 127:e56334

    Google Scholar 

  • Vernetti LA et al (2016) A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med 241(1):101–114

    Article  CAS  Google Scholar 

  • Vunjak-Novakovic G et al (2013) HeLiVa platform: integrated heart-liver-vascular systems for drug testing in human health and disease. Stem Cell Res Ther 4(1):1–6

    Article  CAS  Google Scholar 

  • Wagner J et al (2017a) A dynamic map for learning, communicating, navigating and improving therapeutic development. Nat Rev Drug Discov 17:150

    Article  PubMed  CAS  Google Scholar 

  • Wagner JA et al (2017b) Application of a dynamic map for learning, communicating, navigating, and improving therapeutic development. Clin Transl Sci 11(2):166–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallet MA et al (2017) Isogenic cellular systems model the impact of genetic risk variants in the pathogenesis of type 1 diabetes. Front Endocrinol 8(276)

    Google Scholar 

  • Wang Y et al (2012) Systematic prevention of bubble formation and accumulation for long-term culture of pancreatic islet cells in microfluidic device. Biomed Microdevices 14(2):419–426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang G et al (2014) Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 20(6):616–623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang YI et al (2017) Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng 114(1):184–194

    Article  PubMed  CAS  Google Scholar 

  • Waring MJ et al (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14:475–486

    Article  PubMed  CAS  Google Scholar 

  • Weber EJ et al (2016) Development of a microphysiological model of human kidney proximal tubule function. Kidney Int 90(3):627–637

    Article  PubMed  PubMed Central  Google Scholar 

  • Wikswo JP et al (2013) Engineering challenges for instrumenting and controlling integrated organ-on-Chip Systems. IEEE Trans Biomed Eng 60(3):682–690

    Article  PubMed  PubMed Central  Google Scholar 

  • Workman MJ et al (2016) Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med 23:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao S et al (2017) A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat Commun 8:14584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon No D et al (2015) 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip 15(19):3822–3837

    Article  PubMed  CAS  Google Scholar 

  • Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Radisic M (2017) Organ-on-a-chip devices advance to market. Lab Chip 17(14):2395–2420

    Article  PubMed  CAS  Google Scholar 

  • Zhang YS et al (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang YS et al (2017) Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci 114(12):E2293–E2302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zheng Z, Zheng F (2016) Immune cells and inflammation in diabetic nephropathy. J Diabetes Res 2016:10

    Google Scholar 

  • Zhu J et al (2016) Human fallopian tube epithelium co-culture with murine ovarian follicles reveals crosstalk in the reproductive cycle. Mol Hum Reprod 22:756–767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie A. Low .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Low, L.A., Sutherland, M., Lumelsky, N., Selimovic, S., Lundberg, M.S., Tagle, D.A. (2020). Organs-on-a-Chip. In: Oliveira, J., Reis, R. (eds) Biomaterials- and Microfluidics-Based Tissue Engineered 3D Models. Advances in Experimental Medicine and Biology, vol 1230. Springer, Cham. https://doi.org/10.1007/978-3-030-36588-2_3

Download citation

Publish with us

Policies and ethics