Skip to main content

Short Walk Adventures

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 313))

Abstract

We review recent development of short uniform random walks, with a focus on its connection to (zeta) Mahler measures and modular parametrisation of the density functions. Furthermore, we extend available ‘probabilistic’ techniques to cover a variation of random walks and reduce some three-variable Mahler measures, which are conjectured to evaluate in terms of L-values of modular forms, to hypergeometric form.

To the memory of Jon Borwein, who convinced us that a short walk can be adventurous

The original version of this chapter was revised: The cross-citations in square brackets has now been updated. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-36568-4_28

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Change history

  • 12 May 2020

    We review recent development of short uniform random walks, with a focus on its connection to (zeta) Mahler measures and modular parametrisation of the density functions. Furthermore, we extend available ‘probabilistic’ techniques to cover a variation of random walks and reduce some three-variable Mahler measures, which are conjectured to evaluate in terms of L-values of modular forms, to hypergeometric form.

References

  1. Adamchik, V.S.: Integral and series representations for Catalan’s constant. Unpublished note. http://www.cs.cmu.edu/~adamchik/articles/catalan.htm

  2. Ahlgren, S., Berndt, B.C., Yee, A.Y., Zaharescu, A.: Integrals of Eisenstein series and derivatives of \(L\)-functions. Int. Math. Res. Not. 2002(32), 1723–1738 (2002)

    Google Scholar 

  3. Akatsuka, H.: Zeta Mahler measures. J. Number Theory 129(11), 2713–2734 (2009)

    Article  MathSciNet  Google Scholar 

  4. Almkvist, G., van Straten, D., Zudilin, W.: Generalizations of Clausen’s formula and algebraic transformations of Calabi–Yau differential equations. Proc. Edinb. Math. Soc. 54(2), 273–295 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bailey, D.H., Borwein, J.M.: Hand-to-hand combat with multi-thousand-digit integrals. J. Comput. Sci. 3, 77–86 (2012)

    Article  Google Scholar 

  6. Bailey, D.H., Borwein, J.M., Broadhurst, D.J., Glasser, M.L.: Elliptic integral evaluations of Bessel moments and applications. J. Phys. A 41(20), 5203–5231 (2008)

    Article  MathSciNet  Google Scholar 

  7. Berndt, B.C., Zaharescu, A.: An integral of Dedekind eta-functions in Ramanujan’s lost notebook. J. Reine Angew. Math. 551, 33–39 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Borwein, J.M.: A short walk can be beautiful. J. Humanist. Math. 6(1), 86–109 (2016)

    Article  Google Scholar 

  9. Borwein, J.M., Nuyens, D., Straub, A., Wan, J.: Some arithmetic properties of short random walk integrals. Ramanujan J. 26(1), 109–132 (2011)

    Article  MathSciNet  Google Scholar 

  10. Borwein, J.M., Straub, A., Wan, J., Zudilin, W.: Densities of short uniform random walks, with an appendix by D. Zagier. Can. J. Math. 64(5), 961–990 (2012)

    Article  Google Scholar 

  11. Borwein, J.M., Straub, A., Wan, J.: Three-step and four-step random walk integrals. Exp. Math. 22(1), 1–14 (2013)

    Article  MathSciNet  Google Scholar 

  12. Boyd, D.: Mahler’s measure and special values of \(L\)-functions. Exp. Math. 7(1), 37–82 (1998)

    Google Scholar 

  13. Boyd, D., Lind, D., Rodriguez-Villegas, F., Deninger, C.: The many aspects of Mahler’s measure. Final report of the Banff workshop 03w5035 (26 April–1 May 2003). http://www.birs.ca/workshops/2003/03w5035/report03w5035.pdf

  14. Broadhurst, D.: Feynman integrals, \(L\)-series and Kloosterman moments. Commun. Number Theory Phys. 10(3), 527–569 (2016)

    Google Scholar 

  15. Chan, H.H., Wan, J., Zudilin, W.: Legendre polynomials and Ramanujan-type series for \(1/\pi \). Isr. J. Math. 194(1), 183–207 (2013)

    Google Scholar 

  16. Cohen, H.: Personal communication (23 March 2018)

    Google Scholar 

  17. Duke, W., Imamo\(\bar{\rm {g}}\)lu, Ö.: On a formula of Bloch. Funct. Approx. 37(1), 109–117 (2007)

    Google Scholar 

  18. Guillera, J.: A family of Ramanujan-Orr formulas for \(1/\pi \). Integral Transforms Spec. Funct. 26(7), 531–538 (2015)

    Google Scholar 

  19. Paşol, V., Zudilin, W.: A study of elliptic gamma function and allies. Res. Math. Sci. 5(4), Art. 39, p 11 (2018)

    Google Scholar 

  20. Rogers, M.D.: A study of inverse trigonometric integrals associated with three-variable Mahler measures, and some related identities. J. Number Theory 121, 265–304 (2006)

    Article  MathSciNet  Google Scholar 

  21. Rogers, M.D., Straub, A.: A solution of Sun’s \$520 challenge concerning \(520/\pi \). Int. J. Number Theory 9, 1273–1288 (2013)

    Google Scholar 

  22. Rogers, M.D., Zudilin, W.: On the Mahler measure of \(1+X+1/X+Y+1/Y\). Int. Math. Res. Not. 2014(9), 2305–2326 (2014)

    Google Scholar 

  23. Shinder, E., Vlasenko, M.: Linear Mahler measures and double \(L\)-values of modular forms. J. Number Theory 142, 149–182 (2014)

    Google Scholar 

  24. Smyth, C.J.: On measures of polynomials in several variables. Bull. Aust. Math. Soc. 23, 49–63 (1981)

    Article  MathSciNet  Google Scholar 

  25. Sun, Z.-W.: List of conjectural series for powers of \(\pi \) and other constants (2014). arXiv:1102.5649v47 [math.CA]

  26. Takloo-Bighash, R.: A remark on a paper of S. Ahlgren, B.C. Berndt, A.J. Yee, and A. Zaharescu: “Integrals of Eisenstein series and derivatives of \(L\)-functions” [2]. Int. J. Number Theory 2(1), 111–114 (2006)

    Google Scholar 

  27. Wan, J.G.: Personal communication (26 July 2011)

    Google Scholar 

  28. Wan, J.G.: Series for \(1/\pi \) using Legendre’s relation. Integral Transforms Spec. Funct. 25(1), 1–14 (2014)

    Google Scholar 

  29. Wan, J.G., Zudilin, W.: Generating functions of Legendre polynomials: a tribute to Fred Brafman. J. Approx. Theory 164, 488–503 (2012)

    Article  MathSciNet  Google Scholar 

  30. Zhou, Y.: On Borwein’s conjectures for planar uniform random walks. J Austral. Math. Soc. 107(3), 392–411 (2019)

    Google Scholar 

  31. Zhou, Y.: Wick rotations, Eichler integrals, and multi-loop Feynman diagrams. Commun. Number Theory Phys. 12(1), 127–192 (2018)

    Article  MathSciNet  Google Scholar 

  32. Zudilin, W.: Period(d)ness of \(L\)-values. In: Borwein, J.M., et al. (eds.) Number Theory and Related Fields, In Memory of Alf van der Poorten. Springer Proceedings in Mathematics and Statistics, vol. 43, pp. 381–395. Springer, New York (2013)

    Google Scholar 

  33. Zudilin, W.: A generating function of the squares of Legendre polynomials. Bull. Aust. Math. Soc. 89(1), 125–131 (2014)

    Article  MathSciNet  Google Scholar 

  34. Zudilin, W.: Hypergeometric heritage of W.N. Bailey. With an appendix: Bailey’s letters to F. Dyson. Not. Intern. Congr. Chin. Mathematicians 7(2), 32–46 (2019)

    Google Scholar 

Download references

Acknowledgements

We thank H. Cohen for supplying us with the numerical observation (10) whose origin remains completely mysterious to us. We also thank the referee for their valuable feedback.

Both authors acknowledge support of the Max Planck Society during their stays at the Max Planck Institute for Mathematics (Bonn, Germany) in the years 2015–2017. The second author is partially supported by Laboratory of Mirror Symmetry NRU HSE, RF government grant, ag. no. 14.641.31.0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wadim Zudilin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Straub, A., Zudilin, W. (2020). Short Walk Adventures. In: Bailey, D., et al. From Analysis to Visualization. JBCC 2017. Springer Proceedings in Mathematics & Statistics, vol 313. Springer, Cham. https://doi.org/10.1007/978-3-030-36568-4_27

Download citation

Publish with us

Policies and ethics