Skip to main content

Thermodynamic Properties of Layered Tetradymite-like Compounds of the Ag–Ge–Sb–Te System

  • Conference paper
  • First Online:
Materials Processing Fundamentals 2020

Abstract

The phase equilibria of the Ag–Ge–Sb–Te system in the part Ag8GeTe6–Ge–GeTe–Sb2Te3 were investigated by the electromotive force (EMF) method. The determined phase relations were used to express the chemical reactions. The potential-forming reactions were performed by applying electrochemical cells (−) C | Ag | Ag2GeS3-glass | D | C (+), where C is graphite, Ag2GeS3-glass is the fast purely Ag+ ions conducting electrolyte, and D is an equilibrium mixture of phases. According to the experimental data on the EMF versus temperature of each electrochemical cells, analytical equations for the Gibbs energies of GeSb8Te13, GeSb6Te10, GeSb4Te7, GeSb2Te4, Ge2Sb2Te5, Ge3Sb2Te6, and Ge4Sb2Te7 compounds were obtained. The thermodynamic properties of silver-saturated tetradymite-like compounds have been calculated for the first time. A good correspondence between experimental values and structure data reported in the literature has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogacheva EI, Nashchekina ON, Tavrina TV, YeO Vekhov, Sipatov AYu, Dresselhaus MS (2003) Non-stoichiometry in SnTe thin films and temperature instabilities of thermoelectric properties. Mater Sci Semicond Process 6(5–6):497–501

    Article  Google Scholar 

  2. Rogacheva EI, Nashchekina ON, Sipatov AYu, Fedorov AG, Grigorov SN (2009) Growth mechanism and thermoelectric properties of PbSe/EuS superlattices. Phys Status Solidi C 6(5):1149–1153

    Article  Google Scholar 

  3. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303

    Article  Google Scholar 

  4. Tesfaye F, Moroz M (2018) An overview of advanced chalcogenide thermo-electric materials and their applications. J Electron Res Appl 2(2):28–41

    Article  Google Scholar 

  5. Kuypers S, van Tendeloo G, van Landuyt J, Amelinckx S (1988) Electron microscopic study of the homologous series of mixed layer compounds R2Te3(GeTe)n (R = Sb, Bi). J Solid State Chem 76(1):102–108

    Article  Google Scholar 

  6. Frangis N, Kuypers S, Manolikas C, Van Landuyt J, Amelinckx S (1989) Continuous series of one-dimensional structures in the compounds Bi2+xSe3, Bi2+xTe3, Sb2+xTe3, (Bi2Te3)nGeTe and (Sb2Te3)nGeTe. Solid State Commun 69(8):817–819

    Article  Google Scholar 

  7. Shelimova LE, Karpinskii OG, Zemskov VS, Konstantinov PP (2000) Structural and electrical properties of layered tetradymite-like compounds in the GeTe—Bi2Te3 and GeTe—Sb2Te3 systems. Inorg Mater 36(3):235–242

    Article  Google Scholar 

  8. Shelimova LE, Karpinskii OG, Kretova MA, Kosyakov VI, Shestakov VA (2000) Homologous series of layered tetradymite-like compounds in the Sb-Te and GeTe-Sb2Te3 systems. Inorg Mater 36(8):768–775

    Article  Google Scholar 

  9. Shelimova LE, Karpinskii OG, Konstantinov PP, Kretova MA, Avilov ES, Zemskov VS (2001) Composition and properties of layered compounds in the GeTe–Sb2Te3 system. Inorg Mater 37(4):342–348

    Article  Google Scholar 

  10. Horichok I, Ahiska R, Freik D, Nykyruy L, Mudry S (2016) Phase content and thermoelectric properties of optimized thermoelectric structures based on the Ag-Pb-Sb-Te system. J Electron Mater 45(3):1576–1583

    Article  Google Scholar 

  11. Abrikosov NK, Danilova-Dobryakova GT (1965) Sb2Te3-GeTe phase diagram. Izv Akad Nauk SSSR Neorg Mater 1(2):204–209 (in Russian)

    Google Scholar 

  12. Skums VF, Valevskii BL, Pashko VA (1985) Quantitative differential thermal analysis of phase relations in the GeTe-Sb2Te3 system. Zh Fiz Khim 59(9):2159–2162

    Google Scholar 

  13. Skoropanov AS, Valevsky BL, Skums VF, Samal GI, Vecher AA (1985) Physico-chemical study of Ge(Pb)Te-Bi2(Sb2)Te3 system ternary compounds. Thermochim Acta 90:331–334

    Article  Google Scholar 

  14. Karpinsky OG, Shelimova LE, Kretova MA, Fleurial J-P (1998) An X-ray study of the mixed-layered compounds of (GeTe)n (Sb2Te3)m homologous series. J. Alloys Compd 268(1–2):112–117

    Article  Google Scholar 

  15. Karpinskii OG, Shelimova LE, Kretova MA, Fleurial JP (1998) Structural study of ternary layered compounds in the (GeTe)n·(Bi2Te3)m and (GeTe)n·(Sb2Te3)m homologous series. Inorg Mater 34(3):225–232

    Google Scholar 

  16. Moroz MV, Prokhorenko MV (2015) Phase relations in PbSe-PbTe alloys of the Ag-Pb-Se-Te system studied by EMF measurements. Inorg Mater 51(4):302–306

    Article  Google Scholar 

  17. Moroz MV, Prokhorenko MV (2015) Determination of thermodynamic properties of saturated solid solutions of the Ag–Ge–Se system using EMF technique. Russ J Electrochem 51(7):697–702

    Article  Google Scholar 

  18. Prokhorenko MV, Moroz MV, Demchenko PYu (2015) Measuring the thermodynamic properties of saturated solid solutions in the Ag2Te-Bi-Bi2Te3 system by the electromotive force method. Russ J Phys Chem A 89(8):1330–1334

    Article  Google Scholar 

  19. Shelimova LE, Karpinsky OG, Kretova MA, Avilov ES (1996) Phase equilibria in the Ge-Bi-Te ternary system at 570–770 K temperature range. J Alloys Compd 243(1–2):194–201

    Article  Google Scholar 

  20. Abrikosov NKh, Stasova MM (1985) Solid solutions based on bismuth and antimony tellurides and bismuth selenides. Izv Akad Nauk SSSR Neorg Mater 21(12):2011–2015 (in Russian)

    Google Scholar 

  21. Moroz MV, Demchenko PYu, Prokhorenko MV, Reshetnyak OV (2017) Thermodynamic properties of saturated solid solutions of the phases Ag2PbGeS4, Ag0.5Pb1.75GeS4 and Ag6.72Pb0.16Ge0.84S5.20 of the Ag-Pb-Ge-S system determined by EMF method. J Phase Equilibria Diffus 38(4):426–433

    Google Scholar 

  22. Karapetyans MKh (1953) Chemical thermodynamics. Goskhimizdat, Moscow (in Russian)

    Google Scholar 

  23. Barin I (1995) Thermochemical data of pure substance. VCH, Weinheim

    Book  Google Scholar 

  24. Babanly, MB, Yusibov, YA, Babanly, NB (2011) The EMF method with solid-state electrolyte in the thermodynamic investigation of ternary copper and silver chalcogenides. In: Kara S (ed) Electromotive force and measurement in several systems. InTech, pp 57–78

    Google Scholar 

  25. Voronin MV, Osadchii EG (2013) Thermodynamic properties of silver and bismuth sulfosalt minerals, pavonite (AgBi3S5) and matildite (AgBiS2) and implications for ore deposits. Econ Geol 108(5):1203–1210

    Article  Google Scholar 

  26. Aliev ZS, Musayeva SS, Imamaliyeva SZ, Babanly MB (2017) Thermodynamic study of antimony chalcoiodides by EMF method with an ionic liquid. J Therm Anal Calorim 133:1115–1120

    Article  Google Scholar 

  27. Voronin MV, Osadchii EG, Brichkina EA (2017) Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag–Te and Ag–Te–O. Phys Chem Miner 44(9):639–653

    Article  Google Scholar 

  28. Babanly NB, Orujlu EN, Imamaliyeva SZ, Yusibov YA, Babanly MB (2019) Thermodynamic investigation of silver-thallium tellurides by EMF method with solid electrolyte Ag4RbI5. J Chem Thermodyn 128:78–86

    Article  Google Scholar 

  29. Imamaliyeva SZ, Musayeva SS, Babanly DM, Jafarov YI, Taghiyev DB, Babanly MB (2019) Determination of the thermodynamic functions of bismuth chalcoiodides by EMF method with morpholinium formate as electrolyte. Thermochim Acta 679:178319

    Article  Google Scholar 

  30. Robinel E, Carette B, Ribes M (1983) Silver sulfide based glasses (I): glass forming regions, structure and ionic conduction of glasses in GeS2–Ag2S and GeS2–Ag2S–AgI systems. J Non-Cryst Solids 57(1):49–58

    Article  Google Scholar 

  31. Moroz MV, Demchenko PYu, Prokhorenko SV, Moroz VM (2013) Physical properties of glasses in the Ag2GeS3-AgBr system. Phys Solid State 55(8):1613–1618

    Article  Google Scholar 

  32. Osadchii EG, Rappo OA (2004) Determination of standard thermodynamic properties of sulfides in the Ag-Au-S system by means of a solid-state galvanic cell. Am Mineral 89(10):1405–1410

    Article  Google Scholar 

  33. Moroz M, Tesfaye F, Demchenko P, Prokhorenko M, Lindberg D, Reshetnyak O, Hupa L (2018) Determination of the thermodynamic properties of the Ag2CdSn3S8 and Ag2CdSnS4 phases in the Ag–Cd–Sn–S system by the solid-state electrochemical cell method. J Chem Thermodyn 118:255–262

    Article  Google Scholar 

  34. Diffractometer. Stoe WinXPOW, Version 3.03 (2010) Stoe Cie GmbH Darmstadt

    Google Scholar 

  35. Kraus W, Nolze G (1996) POWDER CELL—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29:301–303

    Article  Google Scholar 

  36. Downs RT, Hall-Wallace M (2003) The American Mineralogist crystal structure database. Am Mineral 88(1):247–250

    Google Scholar 

  37. Villars P, Cenzual K (eds) (2014) Pearson’s crystal data: crystal structure database for inorganic compounds, release 2014/15. ASM International, Ohio, USA

    Google Scholar 

  38. Tesfaye F, Taskinen P (2014) Electrochemical study of the thermodynamic properties of matildite (β-AgBiS2) in different temperature and compositional ranges. J Solid State Electrochem 18(6):1683–1694

    Article  Google Scholar 

  39. Moroz M, Tesfaye F, Demchenko P, Prokhorenko M, Lindberg D, Reshetnyak O, Hupa L (2018) Thermodynamic properties of magnetic semiconductors Ag2FeSn3S8 and Ag2FeSnS4 determined by the EMF method. In: Lambotte G, Lee J, Allanore A, Wagstaff S (eds) Materials processing fundamentals 2018. Springer, New York, pp 87–98

    Chapter  Google Scholar 

  40. Moroz M, Tesfaye F, Demchenko P, Prokhorenko M, Lindberg D, Reshetnyak O, Hupa L (2019) Thermal stability and thermodynamics of the Ag2ZnGeS4 compound. In: Lambotte G, Lee J, Allanore A, Wagstaff S (eds) Materials processing fundamentals 2019. Springer, New York, pp 215–226

    Chapter  Google Scholar 

  41. Blachnik R, Gather B (1978) Mischungen von GeTe, SnTe und PbTe MIT Ag2Te lin beitrag zur klärung der konstitution der ternären Ag-IVb-Te systeme (IVb = Ge, Sn, Pb). J. Common Met. 60(1):25–32

    Article  Google Scholar 

  42. Wu H-J, Chen S-W (2011) Phase equilibria of Ag–Sb–Te thermoelectric materials. Acta Mater 59(16):6463–6472

    Article  Google Scholar 

  43. Shelimova LE, Karpinskii OG, Svechnikova TE, Nikhezina IYu, Avilov ES, Kretova MA, Zemskov VS (2008) Effect of cadmium, silver, and tellurium doping on the properties of single crystals of the layered compounds PbBi4Te7 and PbSb2Te4. Inorg Mater 44(4):371–376

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Ministry of Education and Science of Ukraine (grant No. 0119U002208). This work was also financially supported by the Academy of Finland project “Thermodynamic investigation of complex inorganic material systems for improved renewable energy and metals production processes” (Decision number 311537), as part of the activities of the Johan Gadolin Process Chemistry Center at Åbo Akademi University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Moroz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moroz, M. et al. (2020). Thermodynamic Properties of Layered Tetradymite-like Compounds of the Ag–Ge–Sb–Te System. In: Lee, J., Wagstaff, S., Lambotte, G., Allanore, A., Tesfaye, F. (eds) Materials Processing Fundamentals 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36556-1_23

Download citation

Publish with us

Policies and ethics