Skip to main content

Critical Care Management for Patients with Spinal Cord Injury

  • Chapter
  • First Online:
Neurointensive Care Unit

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 1405 Accesses

Abstract

The care of the patient with a spinal cord injury begins in the prehospital and critical care settings. Crucial interventions during this period are essential to achieving good outcomes in this patient population. This chapter reviews the state-of-the-art critical care management of patients with acute spinal cord injury. This includes respiratory, circulatory, neurological, and hematological considerations. Also addressed are the role of steroids in this population and imaging considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Theodore N, Aarabi B, Dhall SS, Gelb DE, Hurlbert RJ, Rozzelle CJ, Ryken TC, Walters BC, Hadley MN. Transportation of patients with acute traumatic cervical spine injuries. Neurosurgery. 2013;72:35–9.

    Article  PubMed  Google Scholar 

  2. National SCI Statistical Center. Spinal cord injury facts and figures at a glance. Birmingham: National SCI Statistical Center; 2018.

    Google Scholar 

  3. Devivo MJ. Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord. 2012;50:365–72.

    Article  CAS  PubMed  Google Scholar 

  4. Savic G, DeVivo MJ, Frankel HL, Jamous MA, Soni BM, Charlifue S. Long-term survival after traumatic spinal cord injury: a 70-year British study. Spinal Cord. 2017;55:651–8.

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y, He Y, DeVivo MJ. Changing demographics and injury profile of new traumatic spinal cord injuries in the United States, 1972–2014. Arch Phys Med Rehabil. 2016;97:1610–9.

    Article  PubMed  Google Scholar 

  6. Furlan JC, Sakakibara BM, Miller WC, Krassioukov AV. Global incidence and prevalence of traumatic spinal cord injury. Can J Neurol Sci. 2013;40:456–64.

    Article  PubMed  Google Scholar 

  7. Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG. Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol. 2014;6:309–31.

    PubMed  PubMed Central  Google Scholar 

  8. Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, Choi D, Fehlings MG. Traumatic spinal cord injury-repair and regeneration. Neurosurgery. 2017;80:S22.

    Article  Google Scholar 

  9. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG. Traumatic spinal cord injury. Nat Rev Dis Prim. 2017;3:17018.

    Article  PubMed  Google Scholar 

  10. Cripps RA, Lee BB, Wing P, Weerts E, Mackay J, Brown D. A global map for traumatic spinal cord injury epidemiology: towards a living data repository for injury prevention. Spinal Cord. 2011;49:493–501.

    Article  CAS  PubMed  Google Scholar 

  11. Kumar R, Lim J, Mekary RA, Rattani A, Dewan MC, Sharif SY, Osorio-Fonseca E, Park KB. Traumatic spinal injury: global epidemiology and worldwide volume. World Neurosurg. 2018;113:e363.

    Article  Google Scholar 

  12. Jackson AB, Dijkers M, Devivo MJ, Poczatek RB. A demographic profile of new traumatic spinal cord injuries: change and stability over 30 years. Arch Phys Med Rehabil. 2004;85:1740–8.

    Article  PubMed  Google Scholar 

  13. Chen Y, Tang Y, Vogel L, DeVivo M. Causes of spinal cord injury. Top Spinal Cord Inj Rehabil. 2013;19:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumar Y, Hayashi D. Role of magnetic resonance imaging in acute spinal trauma: a pictorial review. BMC Musculoskelet Disord. 2016;17:310.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee BB, Cripps RA, Fitzharris M, Wing PC. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord. 2014;52:110–6.

    Article  CAS  PubMed  Google Scholar 

  16. Theodore N, Hadley MN, Aarabi B, Dhall SS, Gelb DE, Hurlbert RJ, Rozzelle CJ, Ryken TC, Walters BC. Prehospital cervical spinal immobilization after trauma. Neurosurgery. 2013;72:22–34.

    Article  PubMed  Google Scholar 

  17. Harrigan MR, Hadley MN, Dhall SS, Walters BC, Aarabi B, Gelb DE, Hurlbert RJ, Rozzelle CJ, Ryken TC, Theodore N. Management of vertebral artery injuries following non-penetrating cervical trauma. Neurosurgery. 2013;72:234–43.

    Article  PubMed  Google Scholar 

  18. Dhall SS, Hadley MN, Aarabi B, Gelb DE, Hurlbert RJ, Rozzelle CJ, Ryken TC, Theodore N, Walters BC. Deep venous thrombosis and thromboembolism in patients with cervical spinal cord injuries. Neurosurgery. 2013;72:244–54.

    Article  PubMed  Google Scholar 

  19. Hadley MN, Walters BC, Aarabi B, Dhall SS, Gelb DE, Hurlbert RJ, Rozzelle CJ, Ryken TC, Theodore N. Clinical assessment following acute cervical spinal cord injury. Neurosurgery. 2013;72:40–53.

    Article  PubMed  Google Scholar 

  20. Dhall SS, Hadley MN, Aarabi B, Gelb DE, Hurlbert RJ, Rozzelle CJ, Ryken TC, Theodore N, Walters BC. Nutritional support after spinal cord injury. Neurosurgery. 2013;72:255–9.

    Article  PubMed  Google Scholar 

  21. Ryken TC, Hadley MN, Walters BC, Aarabi B, Dhall SS, Gelb DE, Hurlbert RJ, Rozzelle CJ, Theodore N. Radiographic assessment. Neurosurgery. 2013;72:54–72.

    Article  PubMed  Google Scholar 

  22. Gelb DE, Hadley MN, Aarabi B, Dhall SS, Hurlbert RJ, Rozzelle CJ, Ryken TC, Theodore N, Walters BC. Initial closed reduction of cervical spinal fracture-dislocation injuries. Neurosurgery. 2013;72:73–83.

    Article  PubMed  Google Scholar 

  23. Ryken TC, Hurlbert RJ, Hadley MN, Aarabi B, Dhall SS, Gelb DE, Rozzelle CJ, Theodore N, Walters BC. The acute cardiopulmonary management of patients with cervical spinal cord injuries. Neurosurgery. 2013;72:84–92.

    Article  PubMed  Google Scholar 

  24. Hurlbert RJ, Hadley MN, Walters BC, Aarabi B, Dhall SS, Gelb DE, Rozzelle CJ, Ryken TC, Theodore N. Pharmacological therapy for acute spinal cord injury. Neurosurgery. 2015;76(Suppl 1):93–105.

    Google Scholar 

  25. Theodore N, Aarabi B, Dhall SS, Gelb DE, Hurlbert RJ, Rozzelle CJ, Ryken TC, Walters BC, Hadley MN. Occipital condyle fractures. Neurosurgery. 2013;72:106–13.

    Article  PubMed  Google Scholar 

  26. Theodore N, Aarabi B, Dhall SS, Gelb DE, Hurlbert RJ, Rozzelle CJ, Ryken TC, Walters BC, Hadley MN. The diagnosis and management of traumatic atlanto-occipital dislocation injuries. Neurosurgery. 2013;72:114–26.

    Article  PubMed  Google Scholar 

  27. Ryken TC, Hadley MN, Aarabi B, Dhall SS, Gelb DE, Hurlbert RJ, Rozzelle CJ, Theodore N, Walters BC. Management of isolated fractures of the axis in adults. Neurosurgery. 2013;72:132–50.

    Article  PubMed  Google Scholar 

  28. Ryken TC, Aarabi B, Dhall SS, Gelb DE, Hurlbert RJ, Rozzelle CJ, Theodore N, Walters BC, Hadley MN. Management of isolated fractures of the atlas in adults. Neurosurgery. 2013;72:127–31.

    Article  PubMed  Google Scholar 

  29. Ryken TC, Hadley MN, Aarabi B, Dhall SS, Gelb DE, Hurlbert RJ, Rozzelle CJ, Theodore N, Walters BC. Management of acute combination fractures of the atlas and axis in adults. Neurosurgery. 2013;72:151–8.

    Article  PubMed  Google Scholar 

  30. Rozzelle CJ, Aarabi B, Dhall SS, Gelb DE, Hurlbert RJ, Ryken TC, Theodore N, Walters BC, Hadley MN. Os Odontoideum. Neurosurgery. 2013;72:159–69.

    Article  PubMed  Google Scholar 

  31. Aarabi B, Walters BC, Dhall SS, Gelb DE, Hurlbert RJ, Rozzelle CJ, Ryken TC, Theodore N, Hadley MN. Subaxial cervical spine injury classification systems. Neurosurgery. 2013;72:170–86.

    Article  PubMed  Google Scholar 

  32. Gelb DE, Aarabi B, Dhall SS, Hurlbert RJ, Rozzelle CJ, Ryken TC, Theodore N, Walters BC, Hadley MN. Treatment of subaxial cervical spinal injuries. Neurosurgery. 2013;72:187–94.

    Article  PubMed  Google Scholar 

  33. Aarabi B, Hadley MN, Dhall SS, Gelb DE, Hurlbert RJ, Rozzelle CJ, Ryken TC, Theodore N, Walters BC. Management of acute traumatic central cord syndrome (ATCCS). Neurosurgery. 2013;72:195–204.

    Article  PubMed  Google Scholar 

  34. Rozzelle CJ, Aarabi B, Dhall SS, Gelb DE, Hurlbert RJ, Ryken TC, Theodore N, Walters BC, Hadley MN. Management of pediatric cervical spine and spinal cord injuries. Neurosurgery. 2013;72:205–26.

    Article  PubMed  Google Scholar 

  35. Rozzelle CJ, Aarabi B, Dhall SS, Gelb DE, Hurlbert RJ, Ryken TC, Theodore N, Walters BC, Hadley MN. Spinal cord injury without radiographic abnormality (SCIWORA). Neurosurgery. 2013;72:227–33.

    Article  PubMed  Google Scholar 

  36. Low-Grade Glioma Guidelines Team in association with the Guidelines and Outcomes Committee of the American Association of Neurological Surgeons. Practice parameters in adults with suspected or known supratentorial nonoptic pathway low-grade glioma. Neurosurg Focus. 1998;4:E10.

    Google Scholar 

  37. Fehlings MG, Vaccaro A, Wilson JR, et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One. 2012;7:e32037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ropper AE, Neal MT, Theodore N. Acute management of traumatic cervical spinal cord injury. Pract Neurol. 2015;15:266–72.

    Article  PubMed  Google Scholar 

  39. Yue JK, Winkler EA, Rick JW, Deng H, Partow CP, Upadhyayula PS, Birk HS, Chan AK, Dhall SS. Update on critical care for acute spinal cord injury in the setting of polytrauma. Neurosurg Focus. 2017;43:E19.

    Article  PubMed  Google Scholar 

  40. McDonald NE, Curran-Sills G, Thomas RE. Outcomes and characteristics of non-immobilised, spine-injured trauma patients: a systematic review of prehospital selective immobilisation protocols. Emerg Med J. 2016;33:732–40.

    Article  PubMed  Google Scholar 

  41. Shavelle RM, Devivo MJ, Paculdo DR, Vogel LC, Strauss DJ. Long-term survival after childhood spinal cord injury. J Spinal Cord Med. 2007;30(Suppl 1):S48–54.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Griffin MR, O’Fallon WM, Opitz JL, Kurland LT. Mortality, survival and prevalence: traumatic spinal cord injury in Olmsted County, Minnesota, 1935–1981. J Chronic Dis. 1985;38:643–53.

    Article  CAS  PubMed  Google Scholar 

  43. DeVivo MJ, Savic G, Frankel HL, Jamous MA, Soni BM, Charlifue S, Middleton JW, Walsh J. Comparison of statistical methods for calculating life expectancy after spinal cord injury. Spinal Cord. 2018;56:666–73.

    Article  PubMed  Google Scholar 

  44. Cao Y, Selassie AW, Krause JS. Risk of death after hospital discharge with traumatic spinal cord injury: a population-based analysis, 1998–2009. Arch Phys Med Rehabil. 2013;94:1054–61.

    Article  PubMed  Google Scholar 

  45. Chamberlain JD, Meier S, Mader L, von Groote PM, Brinkhof MWG. Mortality and longevity after a spinal cord injury: systematic review and meta-analysis. Neuroepidemiology. 2015;44:182–98.

    Article  PubMed  Google Scholar 

  46. DeVivo MJ, Krause JS, Lammertse DP. Recent trends in mortality and causes of death among persons with spinal cord injury. Arch Phys Med Rehabil. 1999;80:1411–9.

    Article  CAS  PubMed  Google Scholar 

  47. Krause JS, Cao Y, DeVivo MJ, DiPiro ND. Risk and protective factors for cause-specific mortality after spinal cord injury. Arch Phys Med Rehabil. 2016;97:1669–78.

    Article  PubMed  Google Scholar 

  48. Shavelle RM, DeVivo MJ, Brooks JC, Strauss DJ, Paculdo DR. Improvements in long-term survival after spinal cord injury? Arch Phys Med Rehabil. 2015;96:645–51.

    Article  PubMed  Google Scholar 

  49. Strauss DJ, Devivo MJ, Paculdo DR, Shavelle RM. Trends in life expectancy after spinal cord injury. Arch Phys Med Rehabil. 2006;87:1079–85.

    Article  PubMed  Google Scholar 

  50. van Middendorp JJ, Hosman AJF, Donders ART, Pouw MH, Ditunno JF, Curt A, Geurts ACH, Van de Meent H. A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: a longitudinal cohort study. Lancet (London, England). 2011;377:1004–10.

    Article  Google Scholar 

  51. Kirshblum SC, Waring W, Biering-Sorensen F, et al. Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2011;34:547–54.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ulndreaj A, Chio JCT, Ahuja CS, Fehlings MG. Modulating the immune response in spinal cord injury. Expert Rev Neurother. 2016;16:1127–9.

    Article  CAS  PubMed  Google Scholar 

  53. Brommer B, Engel O, Kopp MA, et al. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain. 2016;139:692–707.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Stiell IG, Wells GA, Vandemheen KL, et al. The Canadian C-spine rule for radiography in alert and stable trauma patients. JAMA. 2001;286:1841–8.

    Article  CAS  PubMed  Google Scholar 

  55. Stiell IG, Clement CM, Rowe BH, et al. Comparison of the Canadian CT head rule and the New Orleans criteria in patients with minor head injury. JAMA. 2005;294:1511.

    Article  CAS  PubMed  Google Scholar 

  56. Hoffman JR, Mower WR, Wolfson AB, Todd KH, Zucker MI. Validity of a set of clinical criteria to rule out injury to the cervical spine in patients with blunt trauma. N Engl J Med. 2000;343:94–9.

    Article  CAS  PubMed  Google Scholar 

  57. Lo V, Esquenazi Y, Han MK, Lee K. Critical care management of patients with acute spinal cord injury. J Neurosurg Sci. 2013;57:281–92.

    CAS  PubMed  Google Scholar 

  58. Kasliwal MK, Fontes RB, Traynelis VC. Occipitocervical dissociation-incidence, evaluation, and treatment. Curr Rev Musculoskelet Med. 2016;9:247–54.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Robinson A-LL, Möller A, Robinson Y, Olerud C, Moller A, Robinson Y, Olerud C. C2 fracture subtypes, incidence, and treatment allocation change with age: a retrospective cohort study of 233 consecutive cases. Biomed Res Int. 2017;2017:8321680.

    PubMed  PubMed Central  Google Scholar 

  60. Anderson LD, D’Alonzo RT. Fractures of the odontoid process of the axis. J Bone Joint Surg Am. 1974;56:1663–74.

    Article  CAS  PubMed  Google Scholar 

  61. Levine AM, Edwards CC. The management of traumatic spondylolisthesis of the axis. J Bone Joint Surg Am. 1985;67:217–26.

    Article  CAS  PubMed  Google Scholar 

  62. Vaccaro AR, Hurlbert RJ, Patel AA, et al. The subaxial cervical spine injury classification system: a novel approach to recognize the importance of morphology, neurology, and integrity of the disco-ligamentous complex. Spine (Phila Pa 1976). 2007; https://doi.org/10.1097/BRS.0b013e3181557b92.

    Article  PubMed  Google Scholar 

  63. Vaccaro AR, Lehman Ronald AJ, Hurlbert RJ, et al. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine (Phila Pa 1976). 2005;30:2325–33.

    Article  Google Scholar 

  64. Kepler C, Vaccaro A, Koerner J, et al. Reliability analysis of the AOSpine thoracolumbar spine injury classification system by a worldwide group of naïve spinal surgeons. Eur Spine J. 2016;25:1082–6.

    Article  PubMed  Google Scholar 

  65. Urrutia J, Zamora T, Yurac R, Campos M, Palma J, Mobarec S, Prada C. An independent inter- and intraobserver agreement evaluation of the AOSpine subaxial cervical spine injury classification system. Spine (Phila Pa 1976). 2017;42:298–303.

    Article  Google Scholar 

  66. Urrutia J, Zamora T, Yurac R, Campos M, Palma J, Mobarec S, Prada C. An independent Interobserver reliability and Intraobserver reproducibility evaluation of the new AOSpine thoracolumbar spine injury classification system. Spine (Phila Pa 1976). 2015;40:E58.

    Article  Google Scholar 

  67. Kepler CK, Vaccaro AR, Schroeder GD, et al. The thoracolumbar AOSpine injury score. Glob Spine J. 2016;6:329–34.

    Article  Google Scholar 

  68. Vaccaro A, Oner C, Kepler C, et al. AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine (Phila Pa 1976). 2013;38:2028–37.

    Article  Google Scholar 

  69. Vaccaro AR, Schroeder GD, Kepler CK, et al. The surgical algorithm for the AOSpine thoracolumbar spine injury classification system. Eur Spine J. 2016;25:1087–94.

    Article  PubMed  Google Scholar 

  70. Vaccaro AR, Koerner JD, Radcliff KE, et al. AOSpine subaxial cervical spine injury classification system. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2016;25:2173–84.

    Article  Google Scholar 

  71. Schnake K, Schroeder G, Vaccaro A, Oner C. AOSpine classification systems (subaxial, thoracolumbar) J Orthop Trauma. 2017;31 Suppl 4:S23.

    Article  PubMed  Google Scholar 

  72. Talbott JF, Whetstone WD, Readdy WJ, et al. The Brain and Spinal Injury Center score: a novel, simple, and reproducible method for assessing the severity of acute cervical spinal cord injury with axial T2-weighted MRI findings. J Neurosurg Spine. 2015;23:495–504.

    Article  PubMed  Google Scholar 

  73. Yu Y, Matsuyama Y, Yanase M, Ito S, Adachi K, Satake K, Ishiguro N, Kiuchi K. Effects of hyperbaric oxygen on GDNF expression and apoptosis in spinal cord injury. Neuroreport. 2004;15:2369–73.

    Article  PubMed  Google Scholar 

  74. Krassioukov A, Warburton DE, Teasell R, Eng JJ. A systematic review of the management of autonomic dysreflexia after spinal cord injury. Arch Phys Med Rehabil. 2009;90:682–95.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Medicine. C for SC. Acute management of autonomic dysreflexia: individuals with spinal cord injury presenting to health-care facilities. J Spinal Cord Med. 2002;25:67.

    Google Scholar 

  76. Smith CP, Chancellor MB. Botulinum toxin to treat neurogenic bladder. Semin Neurol. 2016;36:5–9.

    Article  PubMed  Google Scholar 

  77. Ginsberg D, Gousse A, Keppenne V, Sievert K-D, Thompson C, Lam W, Brin MF, Jenkins B, Haag-Molkenteller C. Phase 3 efficacy and tolerability study of onabotulinumtoxinA for urinary incontinence from neurogenic detrusor overactivity. J Urol. 2012;187:2131–9.

    Article  CAS  PubMed  Google Scholar 

  78. Cruz F, Herschorn S, Aliotta P, Brin M, Thompson C, Lam W, Daniell G, Heesakkers J, Haag-Molkenteller C. Efficacy and safety of onabotulinumtoxinA in patients with urinary incontinence due to neurogenic detrusor overactivity: a randomised, double-blind, placebo-controlled trial. Eur Urol. 2011;60:742–50.

    Article  CAS  PubMed  Google Scholar 

  79. Silva C, Silva J, Ribeiro M-J, Avelino A, Cruz F. Urodynamic effect of intravesical resiniferatoxin in patients with neurogenic detrusor overactivity of spinal origin: results of a double-blind randomized placebo-controlled trial. Eur Urol. 2005;48:650–5.

    Article  CAS  PubMed  Google Scholar 

  80. Watanabe T, Yokoyama T, Sasaki K, Nozaki K, Ozawa H, Kumon H. Intravesical resiniferatoxin for patients with neurogenic detrusor overactivity. Int J Urol. 2004;11:200–5.

    Article  CAS  PubMed  Google Scholar 

  81. Madersbacher H, Mürtz G, Stöhrer M. Neurogenic detrusor overactivity in adults: a review on efficacy, tolerability and safety of oral antimuscarinics. Spinal Cord. 2013;51:432–41.

    Article  CAS  PubMed  Google Scholar 

  82. Cho KH, Lee SS. Radiofrequency sacral rhizotomy for the management of intolerable neurogenic bladder in spinal cord injured patients. Ann Rehabil Med. 2012;36:213–9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vásquez RG, Sedes PR, Farina MM, Marques AM, Velasco MEF. Respiratory Management in the Patient with spinal cord injury. Biomed Res Int. 2013;2013:1–12.

    Google Scholar 

  84. Hassid VJ, Schinco MA, Tepas JJ, Griffen MM, Murphy TL, Frykberg ER, Kerwin AJ. Definitive establishment of airway control is critical for optimal outcome in lower cervical spinal cord injury. J Trauma. 2008;65:1328–32.

    Article  PubMed  Google Scholar 

  85. Singer M, Webb AR. Oxford handbook of critical care. 3rd ed. New York: Oxford University Press; 2009.

    Book  Google Scholar 

  86. Wong SL, Shem K, Crew J. Specialized respiratory management for acute cervical spinal cord injury:: a retrospective analysis. Top Spinal Cord Inj Rehabil. 2012;18:283–90.

    Article  PubMed  Google Scholar 

  87. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon J. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med. 1990;322:1405–11.

    Article  CAS  PubMed  Google Scholar 

  88. Bracken MB, Shepard MJ, Holford TR, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury. JAMA. 1997;277:1597–604.

    Article  CAS  PubMed  Google Scholar 

  89. Bracken MB, Holford TR. Neurological and functional status 1 year after acute spinal cord injury: estimates of functional recovery in National Acute Spinal Cord Injury Study II from results modeled in National Acute Spinal Cord Injury Study III. J Neurosurg. 2002;96:259–66.

    PubMed  Google Scholar 

  90. Hurlbert RJ. Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg. 2000;93:1–7.

    CAS  PubMed  Google Scholar 

  91. Bracken MB. Methylprednisolone and spinal cord injury. J Neurosurg. 2000;93:175–9.

    Article  CAS  PubMed  Google Scholar 

  92. Bracken MB, Shepard MJ, Collins WF Jr, et al. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data results of the second National Acute Spinal Cord Injury Study. J Neurosurg. 1992;76:23–31.

    Article  CAS  PubMed  Google Scholar 

  93. Evaniew N, Noonan VK, Fallah N, et al. Methylprednisolone for the treatment of patients with acute spinal cord injuries: a propensity score-matched cohort study from a Canadian multi-center spinal cord injury registry. J Neurotrauma. 2015;32:1674–83.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fehlings MG, Wilson JR, Tetreault LA, et al. A clinical practice guideline for the Management of Patients with Acute Spinal Cord Injury: recommendations on the use of methylprednisolone sodium succinate. Glob Spine J. 2017;7:211S.

    Google Scholar 

  95. Pointillart V, Petitjean M, Wiart L, Vital J, Lassié P, Thicoipé M, Dabadie P. Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord. 2000;38:71–5.

    Article  CAS  PubMed  Google Scholar 

  96. Otani K, Abe H, Kadoya S, Nakagawa H, Ikata T, Tominaga S. Beneficial effect of methylprednisolone sodium succinate in the treatment of acute spinal cord injury. Sekitsui Sekizui. 1996;7:633–47.

    Google Scholar 

  97. Bracken MB. Steroids for acute spinal cord injury. Cochrane Database Syst Rev. 2012;1:CD001046.

    PubMed  Google Scholar 

  98. Casha S, Zygun D, McGowan MD, Bains I, Yong VW, John Hurlbert R. Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain. 2012;135:1224–36.

    Article  PubMed  Google Scholar 

  99. Ullman JS, Raksin PB. Atlas of emergency neurosurgery. New York: Thieme Verlagsgruppe; 2015.

    Book  Google Scholar 

  100. Wang JH, Daniels AH, Palumbo MA, Eberson CP. Cervical traction for the treatment of spinal injury and deformity. JBJS Rev. 2014; https://doi.org/10.2106/JBJS.RVW.M.00108.

    Article  Google Scholar 

  101. Dvorak MF, Noonan VK, Fallah N, et al. The influence of time from injury to surgery on motor recovery and length of hospital stay in acute traumatic spinal cord injury: an observational Canadian cohort study. J Neurotrauma. 2015;32:645–54.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lubelski D, Tharin S, Como JJ, Steinmetz MP, Vallier H, Moore T. Surgical timing for cervical and upper thoracic injuries in patients with polytrauma. J Neurosurg Spine. 2017;27:633–7.

    Article  PubMed  Google Scholar 

  103. Wilson JR, Singh A, Craven C, Verrier MC, Drew B, Ahn H, Ford M, Fehlings MG. Early versus late surgery for traumatic spinal cord injury: the results of a prospective Canadian cohort study. Spinal Cord. 2012;50:840–3.

    Article  CAS  PubMed  Google Scholar 

  104. Wilson JR, Tetreault LA, Kwon B, et al. Timing of decompression in patients with acute spinal cord injury: a systematic review. Glob Spine J. 2017;7:115S.

    Article  Google Scholar 

  105. Batchelor PE, Wills TE, Skeers P, Battistuzzo CR, Macleod MR, Howells DW, Sena ES. Meta-analysis of pre-clinical studies of early decompression in acute spinal cord injury: a Battle of time and pressure. PLoS One. 2013;8:e72659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee D-Y, Park Y-J, Kim H-J, Ahn H-S, Hwang S-C, Kim D-H. Early surgical decompression within 8 hours for traumatic spinal cord injury: is it beneficial? A meta-analysis. Acta Orthop Traumatol Turc. 2018;52:101–8.

    Article  PubMed  Google Scholar 

  107. Liu J-M, Long X-H, Zhou Y, Peng H-W, Liu Z-L, Huang S-H. Is urgent decompression superior to delayed surgery for traumatic spinal cord injury? A meta-analysis. World Neurosurg. 2016;87:124–31.

    Article  PubMed  Google Scholar 

  108. Grassner L, Wutte C, Klein B, et al. Early decompression (< 8 h) after traumatic cervical spinal cord injury improves functional outcome as assessed by spinal cord Independence measure after one year. J Neurotrauma. 2016;33:1658–66.

    Article  PubMed  Google Scholar 

  109. Bourassa-Moreau É, Mac-Thiong J-M, Feldman DE, Thompson C, Parent S. Non-neurological outcomes after complete traumatic spinal cord injury: the impact of surgical timing. J Neurotrauma. 2013;30:1596–601.

    Article  PubMed  Google Scholar 

  110. Carreon LY, Dimar JR. Early versus late stabilization of spine injuries: a systematic review. Spine (Phila Pa 1976). 2011;36:727.

    Article  Google Scholar 

  111. Fehlings MG, Rabin D, Sears W, Cadotte DW, Aarabi B. Current practice in the timing of surgical intervention in spinal cord injury. Spine (Phila Pa 1976). 2010;35:S173.

    Google Scholar 

  112. Martirosyan N, Kalani MY, Bichard W, Baaj A, Gonzalez L, Preul M, Theodore N. Cerebrospinal fluid drainage and induced hypertension improve spinal cord perfusion after acute spinal cord injury in pigs. Neurosurgery. 2015;76:461–9.

    Article  PubMed  Google Scholar 

  113. Pennington Z, Zygourakis C, Ahmed AK, Kalb S, Zhu A, Theodore N. Immediate improvement of intraoperative monitoring signals following CSF release for cervical spine stenosis: case report. J Clin Neurosci. 2018; https://doi.org/10.1016/j.jocn.2018.04.023.

    Article  PubMed  Google Scholar 

  114. Goel A, Desai KI, Muzumdar DP. Atlantoaxial fixation using plate and screw method: a report of 160 treated patients. Neurosurgery. 2002;51:1351–7.

    Article  PubMed  Google Scholar 

  115. Harms J, Melcher RP. Posterior C1-C2 fusion with polyaxial screw and rod fixation. Spine (Phila Pa 1976). 2001;26:2467–71.

    Article  CAS  Google Scholar 

  116. Regan MA, Teasell RW, Wolfe DL, Keast D, Mortenson WB, Aubut J-AL. A systematic review of therapeutic interventions for pressure ulcers after spinal cord injury. Arch Phys Med Rehabil. 2009;90:213–31.

    Article  PubMed  PubMed Central  Google Scholar 

  117. van Middendorp JJ, Hosman AJF, Pouw MH, Van de Meent H. ASIA impairment scale conversion in traumatic SCI: is it related with the ability to walk? A descriptive comparison with functional ambulation outcome measures in 273 patients. Spinal Cord. 2009;47:555–60.

    Article  PubMed  Google Scholar 

  118. Cao Y, Chen Y, DeVivo M. Lifetime direct costs after spinal cord injury. Top Spinal Cord Inj Rehabil. 2011;16:10–6.

    Article  Google Scholar 

  119. DeVivo MJ. Causes and costs of spinal cord injury in the United States. Spinal Cord. 1997;35:809–13.

    Article  CAS  PubMed  Google Scholar 

  120. Burns AS, Santos A, Cheng CL, et al. Understanding length of stay after spinal cord injury: insights and limitations from the access to care and timing project. J Neurotrauma. 2017;34:2910–6.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Chan BC-F, Cadarette SM, Wodchis WP, Krahn MD, Mittmann N. The lifetime cost of spinal cord injury in Ontario, Canada: a population-based study from the perspective of the public health care payer. J Spinal Cord Med. 2019;42:184–93.

    Article  PubMed  Google Scholar 

  122. Munce SEP, Wodchis WP, Guilcher SJT, Couris CM, Verrier M, Fung K, Craven BC, Jaglal SB. Direct costs of adult traumatic spinal cord injury in Ontario. Spinal Cord. 2013;51:64–9.

    Article  CAS  PubMed  Google Scholar 

  123. Zimmerman JE, Kramer AA, Knaus WA. Changes in hospital mortality for United States intensive care unit admissions from 1988 to 2012. Crit Care. 2013;17:R81.

    Article  PubMed  PubMed Central  Google Scholar 

  124. DeVivo MJ, Fine PR, Maetz HM, Stover SL. Prevalence of spinal cord injury: a reestimation employing life table techniques. Arch Neurol. 1980;37:707–8.

    Article  CAS  PubMed  Google Scholar 

  125. Ditunno JF, Formal CS. Chronic spinal cord injury. N Engl J Med. 1994;330:550–6.

    Article  PubMed  Google Scholar 

  126. Ergas Z. Spinal cord injury in the United States: a statistical update. Cent Nerv Syst Trauma J Am Paralys Assoc. 1985;2:19–32.

    CAS  Google Scholar 

  127. Harvey C, Rothschild BB, Asmann AJ, Stripling T. New estimates of traumatic SCI prevalence: a survey-based approach. Paraplegia. 1990;28:537–44.

    CAS  PubMed  Google Scholar 

  128. Lasfargues JE, Custis D, Morrone F, Carswell J, Nguyen T. A model for estimating spinal cord injury prevalence in the United States. Paraplegia. 1995;33:62–8.

    CAS  PubMed  Google Scholar 

  129. Noonan VK, Fingas M, Farry A, Baxter D, Singh A, Fehlings MG, Dvorak MF. Incidence and prevalence of spinal cord injury in Canada: a national perspective. Neuroepidemiology. 2012;38:219–26.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Theodore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pennington, Z., Ahmed, A.K., Theodore, N. (2020). Critical Care Management for Patients with Spinal Cord Injury. In: Nelson, S., Nyquist, P. (eds) Neurointensive Care Unit. Current Clinical Neurology. Humana, Cham. https://doi.org/10.1007/978-3-030-36548-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36548-6_13

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-36547-9

  • Online ISBN: 978-3-030-36548-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics