Skip to main content

Management of Elevated Intracranial Pressure

  • Chapter
  • First Online:
Neurointensive Care Unit

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Elevations in intracranial pressure (ICP) constitute neurological emergencies, and a significant amount of time in the neurological critical care unit (NCCU) is spent diagnosing and treating increased ICP. It is pivotal to understand the signs of increased ICP, and treatment should be implemented without delay. Most institutes utilize an algorithmic-based approach for ICP management. This chapter will review the etiologies and diagnosis of increased ICP and will summarize our treatment algorithm. The available evidence for each intervention will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Treggiari MM, Schutz N, Yanez ND, Romand J-A. Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: a systematic review. Neurocrit Care [Internet]. 2007;6(2):104–12. Available from: http://link.springer.com/10.1007/s12028-007-0012-1.

    Article  Google Scholar 

  2. Ropper AH, Samuels MA, Klein JP. Disturbances of cerebrospinal fluid, including hydrocephalus, pseudotumor cerebri, and low-pressure syndromes. In: Adams and Victor’s principles of neurology. 10th ed: McGraw Hill Education; 2014. p. 617–38.

    Google Scholar 

  3. Posner JB, Saper CB, Schiff ND, Plum F. Structural causes of Stupor and Coma. In: Gilman S, editor. PLUM and POSNER’S diagnosis of Stupor and Coma. 4th ed. New York; 2007. p. 88–118.

    Google Scholar 

  4. Burgerman RS, Wolf AL, Kelman SE, Elsner H, Mirvis S, Sestokas AK. Traumatic trochlear nerve palsy diagnosed by magnetic resonance imaging: case report and review of the literature. Neurosurgery. 1989;25(6):1978–81.

    Article  Google Scholar 

  5. Freeman WD. Management of intracranial pressure. Continuum (Minneap Minn) [Internet]. 2015;21(5 Neurocritical Care):1299–323. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26426232.

  6. Posner JB, Saper CB, Schiff ND, Plum F. Examination of the comatose patient. In: PLUM and POSNER’S diagnosis of Stupor and Coma. 4th ed; 2007. p. 38–87.

    Google Scholar 

  7. Armstead WM. Cerebral blood flow autoregulation and dysautoregulation. Anesth Clin. 2016;34(3):465–77.

    Article  Google Scholar 

  8. Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab [Internet]. 2016; Available from: http://jcb.sagepub.com/content/early/2016/05/11/0271678X16648711.abstract.

  9. Trojanowski T. How intracranial aneurysm rupture damages the brain. Interv Neuroradiol [Internet] 2008;14:9–12. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3328053&tool=pmcentrez&rendertype=abstract.

  10. Hayreh SS. Pathogenesis of optic disc edema in raised intracranial pressure. Prog Retin Eye Res [Internet]. 2016;50:108–44. Available from: https://doi.org/10.1016/j.preteyeres.2015.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tsitsopoulos PD, Tsonidis CA, Petsas GP, Hadjiioannou PN, Njau SN, Anagnostopoulos LV. Microsurgical study of the Dorello’s canal. Skull Base Surg. 1996;6(3):181–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ropper AH. Lateral displacement of the brain and level of consciousness in patients with an acute hemispheral mass. N Engl J Med [Internet]. 1986;314(15):953–8. Available from: http://www.nejm.org/doi/abs/10.1056/NEJM199308123290707.

    Article  CAS  PubMed  Google Scholar 

  13. Binder DK, Lyon R, Manley GT, Milhorat TH, Marshall LF, Marion DW. Transcranial motor evoked potential recording in a case of Kernohan’s notch syndrome: case report. Neurosurgery. 2004;54(4):999–1003.

    Article  PubMed  Google Scholar 

  14. Sato M, Tanaka S, Kohama A, Fujii C. Occipital lobe infarction caused by tentorial herniation. Neurosurgery. 1986;18(3):300–5.

    Article  CAS  PubMed  Google Scholar 

  15. Friede RL, Roessman U. The pathogenesis of secondary midbrain hemorrhages. Neurology. 1966;16(12):1210–6.

    Article  CAS  PubMed  Google Scholar 

  16. Zidan AH, Girvin JP. Effect on the Cushing response of different rates of expansion of a supratentorial mass. J Neurosurg [Internet]. 1978;49(1):61–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26734.

    Article  CAS  Google Scholar 

  17. Jaiswal S, Vij M, Mehrota A, Kumar B, Nair A, Jaiswal AK, et al. Choroid plexus tumors: a clinico-pathological and neuro-radiolgical study of 23 cases. Asian J Neurosurg. 2013;8(1):29–35.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab [Internet]. 2016;36(3):513–38. Available from: http://jcb.sagepub.com/content/36/3/513.full.

    Article  CAS  Google Scholar 

  19. Hu HJ, Song M. Disrupted ionic homeostasis in ischemic stroke and new therapeutic targets. J Stroke Cerebrovasc Dis [Internet]. 2017;26(12):2706–19. Available from: https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.011.

    Article  PubMed  Google Scholar 

  20. Durward QJ, Del Maestro RF, Amacher AL, Farrar JK. The influence of systemic arterial pressure and intracranial pressure on the development of cerebral vasogenic edema. J Neurosurg [Internet]. 1983;59(5):803–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6619932.

    Article  CAS  Google Scholar 

  21. Vajkoczy P, Menger MD. Vascular microenvironment in gliomas. Cancer Treat Res. 2004;117:249–62.

    Article  CAS  PubMed  Google Scholar 

  22. Vajkoczy P, Menger MD. Vascular microenvironment in gliomas. J Neuro-Oncol. 2000;50(1–2):99–108.

    Article  CAS  Google Scholar 

  23. Stewart PA, Hayakawa K, Hayakawa E, Farrell CL, Del Maestro RF. A quantitative study of blood-brain barrier permeability ultrastructure in a new rat glioma model. Acta Neuropathol. 1985;67(1–2):96–102.

    Article  CAS  PubMed  Google Scholar 

  24. Millauer B, Wizigmann-Voos S, Schnürch H, Martinez R, Møller NPH, Risau W, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell. 1993;72(6):835–46.

    Article  CAS  PubMed  Google Scholar 

  25. De Vries C, Escobedo JA, Ueno H, Houck K. The fms-Like tyrosine kinase, a receptor for vascular endothelial growth factor Ferrara and Lewis T. Williams Published by: American Association for the Advancement of Science Stable URL: http://www.jstor.org/stable/2876593 JSTOR is a not-for-profits. Science (80-). 1992;255(5047):989–91.

    Article  CAS  PubMed  Google Scholar 

  26. Wang W, Dentler WL, Borchardt RT. VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am J Physiol Heart Circ Physiol [Internet]. 2001;280(1):H434–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11123261.

    Article  CAS  PubMed  Google Scholar 

  27. Fischer S, Wobben M, Marti HH, Renz D, Schaper W. Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res. 2002;63(1):70–80.

    Article  CAS  PubMed  Google Scholar 

  28. Machein MR, Plate KH. VEGF in brain tumors. J Neuro-Oncol. 2000;50(1–2):109–20.

    Article  CAS  Google Scholar 

  29. Dore-Duffy P, Wang X, Mehedi A, Kreipke CW, Rafols JA. Differential expression of capillary VEGF isoforms following traumatic brain injury. Neurol Res [Internet]. 2007;29(February):395–403. Available from: http://www.ingentaconnect.com/content/maney/nres/2007/00000029/00000004/art00010.

    Article  CAS  Google Scholar 

  30. Skold MK, von Gertten C, Sandberg-Nordqvist AC, Mathiesen T, Holmin S. VEGF and VEGF receptor expression after experimental brain contusion in rat. J Neurotrauma. 2005;22(3):353–67.

    Article  PubMed  Google Scholar 

  31. Kovacs Z, Ikezaki K, Samoto K, Inamura T, Fukui M. VEGF and flt. Expression time kinetics in rat brain infarct. Stroke. 1996;27(10):1865–72.

    Article  CAS  PubMed  Google Scholar 

  32. Ziai WC, Chandolu S, Geocadin RG. Cerebral herniation associated with central venous catheter insertion: risk assessment. J Crit Care [Internet]. 2013;28(2):189–95. Available from: https://doi.org/10.1016/j.jcrc.2012.09.013

    Article  Google Scholar 

  33. Bösel J, Sedar D. Respiratory support of the neurocritically ill: airway, mechanical ventilation, and management of respiratory diseases. In: Hemphill JCI, Rabinstein A, Samuels OB, editors. The practice of neurocritical care. 1st ed: Neurocritical Care Society; 2015.

    Google Scholar 

  34. Gabriel EJ, Ghajar J, Jagoda A, Pons PT, Scalea T, Walters BC. Guidelines for the prehospital management of TBI. J Neurotrauma. 2002;19(1):113–74.

    Google Scholar 

  35. Tran D, Newton E, Mount V, Lee J, Ga W, Jj P, et al. Rocuronium versus succinylcholine for rapid sequence induction intubation. Cochrane Database Syst Rev. 2015;10:1–89.

    Google Scholar 

  36. Reich DL, Hossain S, Krol M, Baez B, Patel P, Bernstein A, et al. Predictors of hypotension after induction of general anesthesia. Anesth Analg. 2005;101(3):622–8.

    Article  PubMed  Google Scholar 

  37. Krieger W, Copperman J, Laxer KD. Seizures with etomidate anesthesia. Anesth Analg. 1985;64(12):1226–7.

    Article  CAS  PubMed  Google Scholar 

  38. Hansen HC, Drenck NE. Generalised seizures after etomidate anesthesia. Anaesthesia. 1988;43(9):805–6.

    Article  CAS  PubMed  Google Scholar 

  39. Modica PA, Tempelhoff R, White PF. Pro- and anticonvulsant effects of anesthetics (part II). Anesth Analg. 1990;70(4):433–44.

    Article  CAS  PubMed  Google Scholar 

  40. Carney N, Totten AM, OʼReilly C, Ullman JS, Hawryluk GWJ, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery [Internet]. 2017;80(6):6–15. Available from: https://academic.oup.com/neurosurgery/article-lookup/doi/10.1227/NEU.0000000000001432.

    Article  Google Scholar 

  41. Kelly DF, Goodale DB, Williams J, Herr DL, Chappell ET, Rosner MJ, et al. Propofol in the treatment of moderate and severe head injury: a randomized, prospective double-blinded pilot trial. J Neurosurg. 1999;90(6):1042–52.

    Article  CAS  PubMed  Google Scholar 

  42. Staykov D, Gupta R. Hemicraniectomy in malignant middle cerebral artery infarction. Stroke. 2011;42(2):513–6.

    Article  PubMed  Google Scholar 

  43. Jüttler E, Unterberg A, Woitzik J, Bösel J, Amiri H, Sakowitz OW, et al. Hemicraniectomy in older patients with extensive middle-cerebral-artery stroke. N Engl J Med [Internet]. 2014 Mar 20 [cited 2014 Jul 12];370(12):1091–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24645942.

    Article  PubMed  CAS  Google Scholar 

  44. Jüttler E, Unterberg A, Woitzik J, Bösel J, Amiri H, Sakowitz OW, et al. Hemicraniectomy in older patients with extensive middle-cerebral-artery stroke. N Engl J Med [Internet]. 2014;370(12):1091–100. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1311367.

    Article  PubMed  CAS  Google Scholar 

  45. Brophy GM, Human T, Shutter L. Emergency neurological life support : pharmacotherapy. Neurocrit Care. 2015;23:S48–68.

    Article  PubMed  CAS  Google Scholar 

  46. Shiozaki T, Taneda M, Yoshida H, Iwai A, Yoshioka T, Sugimoto T. Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg. 1993;79:363–8.

    Article  CAS  PubMed  Google Scholar 

  47. Dorfman JD, Burns JD, Green DM, DeFusco C, Agarwal S. Decompressive laparotomy for refractory intracranial hypertension after traumatic brain injury. Neurocrit Care. 2011;15(3):516–8.

    Article  PubMed  Google Scholar 

  48. Joseph DK, Dutton RP, Aarabi B, Scalea TM, Rotondo MF, Wiles CE, et al. Decompressive laparotomy to treat intractable intracranial hypertension after traumatic brain injury. J Trauma - Inj Infect Crit Care. 2004;57(4):687–95.

    Article  Google Scholar 

  49. Shah AK, Fuerst D, Sood S, Asano E, Ahn-Ewing J, Pawlak C, et al. Seizures lead to elevation of intracranial pressure in children undergoing invasive EEG monitoring. Epilepsia. 2007;48(6):1097–103.

    Article  PubMed  Google Scholar 

  50. Roh D, Claassen J. Status epilepticus. In: Lee K, editor. The NeuroICU Book. 2nd ed: McGraw-Hill Education; 2018. p. 52–79.

    Google Scholar 

  51. Egawa S, Hifumi T, Kawakita K, Manabe A, Nakashima R, Matsumura H, et al. Clinical characteristics of non-convulsive status epilepticus diagnosed by simplified continuous electroencephalogram monitoring at an emergency intensive care unit. Acute Med Surg [Internet]. 2017;4(1):31–7. Available from: http://doi.wiley.com/10.1002/ams2.221.

    Article  Google Scholar 

  52. Stocchetti N, Picetti E, Berardino M, Buki A, Chesnut RM, Fountas KN, et al. Clinical applications of intracranial pressure monitoring in traumatic brain injury: report of the Milan consensus conference. Acta Neurochir. 2014;156(8):1615–22.

    Article  PubMed  Google Scholar 

  53. Connolly ES, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke [Internet]. 2012 Jul [cited 2014 May 31];43(6):1711–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22556195.

  54. Hemphill JC, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:2032–60.

    Article  PubMed  Google Scholar 

  55. Freeman WD. Management of intracranial pressure corresponding author. Continuum (N Y). 2015;21(5):1299–323.

    Google Scholar 

  56. Miller C, Tummala RP. Risk factors for hemorrhage associated with external ventricular drain placement and removal. J Neurosurg. 2017;126:289–97.

    Article  PubMed  Google Scholar 

  57. Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES. Ventriculostomy-related infections: a critical review of the literature. Neurosurgery. 2002;51(1):170–82.

    Article  PubMed  Google Scholar 

  58. Mayhall CG, Archer NH, Lamb VA, Spadora AC, Baggett JW, Ward JD, et al. Ventriculostomy-related infections. N Engl J Med [Internet]. 1984;310:553–9. Available from: http://www.nejm.org/doi/abs/10.1056/NEJM199308123290707.

  59. Citerio G, Signorini L, Bronco A, Vargiolu A, Rota M, Latronico N. External ventricular and lumbar drain device infections in icu patients: a prospective multicenter Italian study. Crit Care Med. 2015;43(8):1630–7.

    Article  PubMed  Google Scholar 

  60. Koskinen LOD, Grayson D, Olivecrona M. The complications and the position of the Codman MicroSensor™ ICP device: an analysis of 549 patients and 650 sensors. Acta Neurochir. 2013;155(11):2141–8.

    Article  PubMed  Google Scholar 

  61. Aiolfi A, Benjamin E, Khor D, Inaba K, Lam L, Demetriades D. Brain trauma foundation guidelines for intracranial pressure monitoring: compliance and effect on outcome. World J Surg. 2017;41(6):1543–9.

    Article  PubMed  Google Scholar 

  62. Nwachuku EL, Puccio AM, Fetzick A, Scruggs B, Chang YF, Shutter LA, et al. Intermittent versus continuous cerebrospinal fluid drainage management in adult severe traumatic brain injury: assessment of intracranial pressure burden. Neurocrit Care. 2014;20(1):49–53.

    Article  PubMed  Google Scholar 

  63. Stevens RD, Shoykhet M, Cadena R. Emergency neurological life support: intracranial hypertension and herniation. Neurocrit Care. 2015;23(Suppl 2):S78–82.

    Google Scholar 

  64. Suarez JI, Zaidat OO, Suri MF, Feen ES, Lynch G, Hickman J, et al. Length of stay and mortality in neurocritically ill patients: impact of a specialized neurocritical care team. Crit Care Med. 2004;32(11):2311–7.

    Article  PubMed  Google Scholar 

  65. Varelas PN, Conti MM, Spanaki MV, Potts E, Bradford D, Sunstrom C, et al. The impact of a neurointensivist-led team on a semiclosed neurosciences intensive care unit. Crit Care Med. 2004;32(11):2191–8.

    Article  PubMed  Google Scholar 

  66. Jeong J-H, Bang J, Jeong W, Yum K, Chang J, Hong J-H, et al. A dedicated neurological intensive care unit offers improved outcomes for patients with brain and spine injuries. J Intensive Care Med [Internet]. 2017;885066617706675. Available from: http://journals.sagepub.com/doi/10.1177/0885066617706675%0A, http://www.ncbi.nlm.nih.gov/pubmed/28460590.

  67. Durward QJ, Amacher AL, Del Maestro RF, Sibbald WJ. Cerebral and cardiovascular responses to changes in head elevation in patients with intracranial hypertension. J Neurosurg. 1983;59(C):938–44.

    Article  CAS  PubMed  Google Scholar 

  68. Rosner MJ, Coley IB. Cerebral perfusion pressure, intracranial pressure, and head elevation. J Neurosurg. 1986;65(5):636–41.

    Article  CAS  PubMed  Google Scholar 

  69. Ng I, Lim J, Wong HB. Effects of head posture on cerebral hemodynamics: its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosugery. 2004;54(3):593–7.

    Article  Google Scholar 

  70. Moraine JJ, Berre J, Melot C. Is cerebral perfusion pressure a major determinant of cerebral blood flow during head elevation in patients with severe intracranial lesions? J Neurosurg. 2000;92(4):606–14.

    Article  CAS  PubMed  Google Scholar 

  71. Feldman Z, Kanter MJ, Robertson CS, Contant CF, Hayes C, Sheinberg MA, et al. Effect of head elevation on intracranial pressure, cerebral perfusion pressure, and cerebral blood flow in head-injured patients. J Neurosurg. 1992;76(2):207–11.

    Article  CAS  PubMed  Google Scholar 

  72. Muizelaar JP, Marmarou A, Ward JD, Kontos HA, Choi SC, Becker DP, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg. 1991;75(5):731–9.

    Article  CAS  PubMed  Google Scholar 

  73. Newell DW, Weber JP, Watson R, Aaslid R, Winn HR. Effect of transiet moderate hyperventilation on dynamic cerebral autoregulation after severe head injury. Neurosurgery. 1996;39(1):35–44.

    Article  CAS  PubMed  Google Scholar 

  74. Muizelaar JP, van der Poel HG, Li ZC, Kontos HA, Levasseur JE. Pial arteriolar vessel diameter and CO2 reactivity during prolonged hyperventilation in the rabbit. J Neurosurg. 1988;69(6):923–7.

    Article  CAS  PubMed  Google Scholar 

  75. Javid M, Settlage P. Effect of urea on cerebrospinal fluid pressure in human subjects; preliminary report. J Am Med Assoc. 1956;160(11):943–9.

    Article  CAS  PubMed  Google Scholar 

  76. Wise BL, Chater N. The value of hypertonic mannitol solution in decreasing brain mass and lowering cerebro-spinal-fluid pressure. J Neurosurg. 1962;19:1038–43.

    Article  CAS  PubMed  Google Scholar 

  77. Fisher B, Thomas D, Peterson B. Hypertonic saline lowers raised intracranial pressure in children after head trauma. J Neurosurg Anesth. 1992;4(1):4–10.

    Article  CAS  Google Scholar 

  78. Ropper AH. Hyperosmolar therapy for raised intracranial pressure. N Engl J Med [Internet]. 2012;367(8):746–52. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMct1206321.

    Article  CAS  PubMed  Google Scholar 

  79. Adrogue HJ, Madias NE. Hypernatremia. N Engl J Med. 2000;342(20):1493–9.

    Article  CAS  PubMed  Google Scholar 

  80. McDowell ME, Wolf AV, Steer A. Osmotic volumes of distribution; idiogenic changes in osmotic pressure associated with administration of hypertonic solutions. Am J Phys. 1955;180(3):545–58.

    Article  CAS  Google Scholar 

  81. Muzelaar JP, Wei EP, Becker DP. Mannitol causes compensatory cerebral vasoconstriction and vasodilation in response to blood viscosity changes. J Neurosurg. 1983;59(5):822–8.

    Article  Google Scholar 

  82. Brophy GM, Human T, Shutter L. Emergency neurological life support: pharmacotherapy. Neurocrit Care. 2015;23:48–68.

    Article  CAS  Google Scholar 

  83. James HE, Langfitt TW, Kumar VS, Ghostine SY. Treatment of intracranial hypertension. Analysis of 105 consecutive, continuous recordings of intracranial pressure. Acta Neurochir. 1977;36(3–4):189–200.

    Article  CAS  PubMed  Google Scholar 

  84. Palma L, Bruni G, Fiaschi AI, Mariottni A. Passage of mannitol into the brain around gliomas: a potential cause of rebound phenomenon. A study on 21 patients. J Neurosurg Sci. 2006;50(3):63–6.

    CAS  PubMed  Google Scholar 

  85. Rudehill A, Gordon E, Ohman G, Lindqvist C, Andersson P. Pharmacokinetics and effects of mannitol on hemodynamics, blood and cerebrospinal fluid electrolytes, and osmolality during intracranial surgery. J Neurosurg Anesth. 1993;5(1):4–12.

    Article  CAS  Google Scholar 

  86. Koenig MA, Bryan M, Lewin JL, Mirski MA, Geocadin RG, Stevens RD. Reversal of transtentorial herniation with hypertonic saline. Neurology. 2008;70(25):1023–9.

    Article  CAS  PubMed  Google Scholar 

  87. Mangat HS, Chiu Y-L, Gerber LM, Alimi M, Ghajar J, Härtl R. Hypertonic saline reduces cumulative and daily intracranial pressure burdens after severe traumatic brain injury. J Neurosurg [Internet]. 2015;122(1):202–10. Available from: http://thejns.org/doi/10.3171/2014.10.JNS132545.

    Article  Google Scholar 

  88. Cottenceau V, Masson F, Mahamid E, Petit L, Shik V, Sztark F, et al. Comparison of effects of equiosmolar doses of mannitol and hypertonic saline on cerebral blood flow and metabolism in traumatic brain injury. J Neurotrauma. 2011;28(10):2003–12.

    Article  PubMed  Google Scholar 

  89. McNamara B, Ray J, Menon D, Boniface S. Raised intracranial pressure and seizures in the neurological intensive care unit. Br J Anaesth [Internet]. 2003;90(1):39–42. Available from: https://doi.org/10.1093/bja/aeg008

    Article  CAS  PubMed  Google Scholar 

  90. Ko SB, Ortega-Gutierrez S, Choi HA, Claassen J, Presciutti M, Schmidt JM, et al. Status epilepticus-induced hyperemia and brain tissue hypoxia after cardiac arrest. Arch Neurol. 2011;68(10):1323–6.

    Article  PubMed  Google Scholar 

  91. Gujjar AR, Nandhagopal R, Jacob PC, Al-Hashim A, Al-Amrani K, Ganguly SS, et al. Intravenous levetiracetam vs phenytoin for status epilepticus and cluster seizures: a prospective, randomized study. Seizure [Internet]. 2017;49:8–12. Available from: https://doi.org/10.1016/j.seizure.2017.05.001.

    Article  PubMed  Google Scholar 

  92. Chakravarthi S, Goyal MK, Modi M, Bhalla A, Singh P. Levetiracetam versus phenytoin in management of status epilepticus. J Clin Neurosci [Internet]. 2015;22(6):959–63. Available from: https://doi.org/10.1016/j.jocn.2014.12.013

    Article  CAS  Google Scholar 

  93. Ibrahim K, Christoph M, Schmeinck S, Schmieder K, Steiding K, Schoener L, et al. High rates of prasugrel and ticagrelor non-responder in patients treated with therapeutic hypothermia after cardiac arrest. Theatr Res Int. 2014;85(5):649–56. Available from: https://doi.org/10.1016/j.resuscitation.2014.02.004

    CAS  Google Scholar 

  94. Scirica BM. Therapeutic hypothermia after cardiac arrest. Circulation. 2013;127(2):244–50.

    Article  PubMed  Google Scholar 

  95. Arrich J, Holzer M, Havel C, Müllner M, Herkner H. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst Rev. 2012;12(9):CD004128.

    Google Scholar 

  96. Clifton GL, Miller ER, Choi SC, Levin HS, McCauley S, Smith KR, et al. Lack of effect of induced hypthermia after acute brain injury. N Engl J Med. 2001;344(8):556–63.

    Article  CAS  PubMed  Google Scholar 

  97. Clifton GL, Valadka A, Zygun D, Coffey CS, Drever P, Fourwinds S, et al. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial. Lancet Neurol [Internet]. 2011 Feb [cited 2014 Dec 3];10(2):131–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3628679&tool=pmcentrez&rendertype=abstract.

  98. Clifton GL, Coffey CS, Fourwinds S, Zygun D, Valadka A, Smith KR, et al. Early induction of hypothermia for evacuated intracranial hematomas: a post hoc analysis of two clinical trials. J Neurosurg. 2012;117(4):714–20.

    Article  PubMed  Google Scholar 

  99. Nichol A, Gantner D, Presneill J, Murray L, Trapani T, Bernard S, et al. Protocol for a multicentre randomised controlled trial of early and sustained prophylactic hypothermia in the management of traumatic brain injury. Crit Care Resusc. 2015;17(2):92–100.

    PubMed  Google Scholar 

  100. Andrews PJD, Sinclair HL, Rodriguez A, Harris BA, Battison CG, Rhodes JKJ, et al. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med [Internet]. 2015;373(25):2403–12. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa1507581.

    Article  CAS  Google Scholar 

  101. Komotar RJ, Starke RM, Connolly ES. The role of decompressive craniectomy in diffuse traumatic brain injury. Neurosurgery. 2011;69(2):N22–3.

    Article  PubMed  Google Scholar 

  102. Marion DW. Decompressive craniectomy in diffuse traumatic brain injury. Lancet Neurol [Internet]. 2011;10(6):497–8. Available from: https://doi.org/10.1016/S1474-4422(11)70098-9

    Article  PubMed  Google Scholar 

  103. Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2012;367(15):1387–96.

    Article  CAS  Google Scholar 

  104. Honeybul S, Ho KM, Lind CRP. What can be learned from the DECRA study. World Neurosurg. 2013;79(1):159–61.

    Article  PubMed  Google Scholar 

  105. Hutchinson PJ, Kolias AG, Timofeev IS, Corteen EA, Czosnyka M, Timothy J, et al. Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med. 2016;375(12):1119–30.

    Article  PubMed  Google Scholar 

  106. Stiver SI. Complications of decompressive craniectomy for traumatic brain injury. Neurosurg Focus [Internet]. 2009;26(6):E7. Available from: http://thejns.org/doi/10.3171/2009.4.FOCUS0965.

    Article  PubMed  Google Scholar 

  107. Jiang JY, Xu W, Li WP, Xu WH, Zhang J, Bao YH, et al. Efficacy of standard trauma craniectomy for refractory intracranial hypertension with severe traumatic brain injury: a multicenter, prospective, randomized controlled study. J Neurotrauma. 2005;22(6):623–8.

    Article  PubMed  Google Scholar 

  108. Qiu W, Guo C, Shen H, Chen K, Wen L, Huang H, et al. Effects of unilateral decompressive craniectomy on patients with unilateral acute post-traumatic brain swelling after severe traumatic brain injury. Crit Care. 2009;13(6):1–7.

    Article  Google Scholar 

  109. Vahedi K, Vicaut E, Mateo J, Kurtz A, Orabi M, Guichard JP, et al. Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL trial). Stroke. 2007;38(9):2506–17.

    Article  PubMed  Google Scholar 

  110. Hofmeijer J, Kappelle LJ, Algra A, Amelink GJ, van Gijn J, van der Worp HB. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy after middle cerebral artery infarction with life-threatening edema trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol [Internet]. 2009;8(4):326–33. Available from: https://doi.org/10.1016/S1474-4422(09)70047-X

    Article  PubMed  Google Scholar 

  111. Wijdicks EFM, Sheth KN, Carter BS, Greer DM, Kasner SE, Kimberly WT, et al. Recommendations for the management of cerebral and cerebellar infarction with swelling: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke [Internet]. 2014 May [cited 2014 May 31];45(4):1222–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24481970.

  112. Hofmeijer J, Schepers J, Veldhuis WB, Nicolay K, Kappelle LJ, Bär PR, et al. Delayed decompressive surgery increases apparent diffusion coefficient and improves peri-infarct perfusion in rats with space-occupying cerebral infarction. Stroke. 2004;35(6):1476–81.

    Article  CAS  PubMed  Google Scholar 

  113. Cooper PR, Hagler H, Clark WK, Barnett P. Enhancement of experimental cerebral edema after decompressive craniectomy: implications for the management of severe head injuries. Neurosurgery. 1979;4(4):296–300.

    Article  CAS  PubMed  Google Scholar 

  114. Theodore WH, DiChiro G, Margolin R, Fishbein D, Porter RJ, Brooks RA. Barbiturates reduce human cerebral glucose metabolism. Neurology. 1986;36(1):60–4.

    Article  CAS  PubMed  Google Scholar 

  115. Bilotta F, Gelb AW, Stazi E, Titi L, Paoloni FP, Rosa G. Pharmacological perioperative brain neuroprotection: a qualitative review of randomized clinical trials. Br J Anaesth [Internet]. 2013;110(SUPPL.1):i113–20. Available from: https://doi.org/10.1093/bja/aet059

    Article  CAS  Google Scholar 

  116. Roberts I, Sydenham E. Barbiturates for acute traumatic brain injury. Cochrane Database Syst Rev [Internet]. 2012;12:1–25. Available from: http://doi.wiley.com/10.1002/14651858.CD000033.

  117. Roberts DJ, Hall RI, Kramer AH, Robertson HL, Gallagher CN, Zygun DA. Sedation for critically ill adults with severe traumatic brain injury: a systematic review of randomized controlled trials. Crit Care Med. 2011;39(12):2743–51.

    Article  CAS  PubMed  Google Scholar 

  118. Pérez-Bárcena J, Llompart-Pou JA, Homar J, Abadal JM, Raurich JM, Frontera G, et al. Pentobarbital versus thiopental in the treatment of refractory intracranial hypertension in patients with traumatic brain injury: a randomized controlled trial. Crit Care. 2008;12(4):1–10.

    Article  Google Scholar 

  119. Ward JD, Becker DP, Miller JD, Choi SC, Marmarou A, Wood C, et al. Failure of prophylactic barbiturate coma in the treatment of severe head injury. J Neurosurg [Internet]. 1985;62(3):383–8. Available from: http://thejns.org/doi/10.3171/jns.1985.62.3.0383.

    Article  CAS  PubMed  Google Scholar 

  120. Eisenberg HM, Frankowski RF, Contant CF, Marshall LF, Walker MD. High-dose barbiturate control of elevated intracranial pressure in patients with severe head injury. J Neurosurg [Internet]. 1988;69(1):15–23. Available from: http://thejns.org/doi/10.3171/jns.1988.69.1.0015.

    Article  CAS  PubMed  Google Scholar 

  121. Cosio BG, Torrego A, Adcock IM. Molecular mechanisms of glucocorticoids. Arch Bronconeumol. 2005;41(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  122. Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E. The human glucocorticoid receptor: molecular basis of biologic function. Steroids. 2010;75(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  123. Papadopoulos MC, Saadoun S, Binder DK, Manley GT, Krishna S, Verkman AS. Molecular mechanisms of brain tumor edema. Neuroscience. 2004;129(4):1011–20.

    Article  CAS  PubMed  Google Scholar 

  124. Heiss JD, Papavassiliou E, Merrill MJ, Nieman L, Knightly JJ, Walbridge S, et al. Mechanism of dexamethasone suppression of brain tumor-associated vascular permeability in rats: involvement of the glucocorticoid receptor and vascular permeability factor. J Clin Invest. 1996;98(6):1400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hedley-Whyte ET, Hsu DW. Effect of dexamethasone on blood-brain barrier in the normal mouse. Ann Neurol. 1986;19(4):373–7.

    Article  CAS  PubMed  Google Scholar 

  126. Bastin ME, Carpenter TK, Armitage PA, Sinha S, Wardlaw JM, Whittle IR. Effects of dexamethasone on cerebral perfusion and water diffusion in patients with high-grade glioma. AJNR Am J Neuroradiol [Internet]. 2006;27(2):402–8. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16484419&retmode=ref&cmd=prlinks%5Cnpapers3://publication/uuid/225020BC-0D43-4D1D-85FE-C02A68B841E4.

    CAS  Google Scholar 

  127. Sinha S, Bastin ME, Wardlaw JM, Armitage PA, Whittle IR. Effects of dexamethasone on peritumoural oedematous brain: a DT-MRI study. J Neurol Neurosurg Psychiatry. 2004;75(11):1632–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Renaudin J, Fewer D, Wilson CB, Boldrey EB, Calogero J, Enot KJ. Dose dependency of decadron in patients with partially excised brain tumors. J Neurosurg. 1973;39(3):302–5.

    Article  CAS  PubMed  Google Scholar 

  129. French LA, Galicich JH. The use of steroids for control of cerebral edema. Clin Neurosurg. 1964;10:212–23.

    Article  CAS  PubMed  Google Scholar 

  130. Ryken TC, McDermott M, Robinson PD, Ammirati M, Andrews DW, Asher AL, et al. The role of steroids in the management of brain metastases: a systematic review and evidence-based clinical practice guideline. J Neuro-Oncol. 2010;96(1):103–14.

    Article  CAS  Google Scholar 

  131. Marshall LF, Maas AI, Marshall SB, Bricolo A, Fearnside M, Iannotti F, et al. A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg. 1998;89(4):519–25.

    Article  CAS  PubMed  Google Scholar 

  132. Olldashi F, Muzha I, Filipi N, Lede R, Copertari P, Traverso C, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet. 2004;364(9442):1321–8.

    Article  PubMed  CAS  Google Scholar 

  133. Baigent C, Bracken M, Chadwick D, Curley K, Duley L, Farrell B, et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury - outcomes at 6 months. Lancet. 2005;365(9475):1957–9.

    Article  CAS  Google Scholar 

  134. Roh D, Reznik M, Claassen J. Chronic subdural medical management. Neurosurg Clin N Am [Internet]. 2017;28(2):211–7. Available from: https://doi.org/10.1016/j.nec.2016.11.003

    Article  Google Scholar 

  135. Henaux P-L, Le Reste P-J, Laviolle B, Morandi X. Steroids in chronic subdural hematomas (SUCRE trial): study protocol for a randomized controlled trial. Trials [Internet]. 2017;18(1):252. Available from: http://trialsjournal.biomedcentral.com/articles/10.1186/s13063-017-1990-8.

    Article  CAS  Google Scholar 

  136. Mohney N, Williamson CA, Rothman E, Ball R, Sheehan KM, Pandey AS, et al. A propensity score analysis of the impact of dexamethasone use on delayed cerebral ischemia and poor functional outcomes after subarachnoid hemorrhage. World Neurosurg [Internet]. 2018;109:e655–61. Available from: https://doi.org/10.1016/j.wneu.2017.10.051.

    Article  Google Scholar 

  137. Czorlich P, Sauvigny T, Ricklefs F, Abboud T, Nierhaus A, Vettorazzi E, et al. Impact of dexamethasone in patients with aneurysmal subarachnoid haemorrhage. Eur J Neurol. 2017;24(4):645–51.

    Article  CAS  PubMed  Google Scholar 

  138. Koehler PJ. Use of corticosteroids in neuro-oncology. Anti-Cancer Drugs. 1995;6(1):19–33.

    Article  CAS  PubMed  Google Scholar 

  139. Dietrich J, Rao K, Pastorino S, Kesari S. Corticosteroids in brain cancer patients: benefits and pitfalls. Expert Rev Clin Pharm. 2011;4(2):233–42.

    Article  CAS  Google Scholar 

  140. Ruegg S. Dexamethasone/phenytoin interactions: neurooncological concerns. Swiss Med Wkly. 2002;132(29–30):425–6.

    PubMed  Google Scholar 

  141. Chalk JB, Ridgeway K, Brophy T, Yelland JD, Eadie MJ. Phenytoin impairs the bioavailabilty of dexamethasone in neurological and neurosurgical patients. J Neurol Neurosurg Psychiatry. 1984;47(10):1087–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Haque N, Thrasher K, Werk EE, Knowles HC, Sholiton LJ. Studies on dexamethasone metabolism in man: effect of diphenylhydantoin. J Clin Endocrinol Metab. 1972;34(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  143. Penry JK, Newmark ME. The use of antiepileptic drugs. Ann Intern Med. 1979;90(2):207–18.

    Article  CAS  PubMed  Google Scholar 

  144. McCall M, Jeejeebhoy K, Pencharz P, Moulton R. Effect of neuromuscular blockade on energy expenditure in patients with severe head injury. J Parenter Enter Nutr. 2003;27(1):27–35.

    Article  Google Scholar 

  145. Vernon DD, Witte MK. Effect of neuromuscular blockade on oxygen consumption and energy expenditure in sedated, mechanically ventilated children. Crit Care Med. 2000;28(5):1569–71.

    Article  CAS  PubMed  Google Scholar 

  146. Kerr ME, Sereika SM, Orndoff P, Weber B, Rudy EB, Marion D, et al. Effect of neuromuscular blockers and opiates on the cerebrovascular response to endotracheal suctioning in adults with severe head injuries. Am J Crit Care. 1998;7(3):205–17.

    Article  CAS  PubMed  Google Scholar 

  147. Werba A, Klezl M, Schramm W, Langenecker S, Muller C, Gosch M, et al. The level of neuromuscular block needed to suppress diaphragmatic movement during tracheal suction in patients with raised intracranial pressure: a study with vecuronium and atracurium. Anaesthesia. 1993;48(4):301–3.

    Article  CAS  PubMed  Google Scholar 

  148. White PF, Schlobohm RM, Pitts LH, Lindauer JM. A randomized study of drugs for preventing increases in intracranial pressure during endotracheal suctioning. Anesthesiology. 1982;57(3):242–4.

    Article  CAS  PubMed  Google Scholar 

  149. Steingrub JS, Lagu T, Rothberg MB, Nathanson BH, Raghunathan K, Lindenauer PK. Treatment with neuromuscular blocking agents and the risk of in-hospital mortality among mechanically ventilated patients with severe sepsis. Crit Care Med. 2014;42(1):90–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Forel J-M, Roch A, Marin V, Michelet P, Demory D, Blache J-L, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome∗. Crit Care Med. 2006;34(11):2749–57. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00003246-200611000-00007.

    Article  CAS  PubMed  Google Scholar 

  151. Minton MD, Grosslight K, Stirt JA, Bedford RF. Increases in intracranial pressure from succinylcholine: prevention by prior nondepolarizing blockade. Anesthesiology. 1986;65(2):165–9.

    Article  CAS  PubMed  Google Scholar 

  152. Stirt JA, Grosslight KR, Bedford RF, Vollmer D. “Defasciculation” with metocurine prevents succinyulcholine-induced increases in intracranial pressure. Anesthesiology. 1987;67(1):50–3.

    Article  CAS  PubMed  Google Scholar 

  153. Juul N, Morris GF, Marshall SB, Marshall LF. Neuromuscular blocking agents in neurointensive care. Acta Neurochir Suppl. 2000;76:467–70.

    CAS  PubMed  Google Scholar 

  154. Hsiang JK, Chestnut RM, Crisp CB, Klauber MR, Blunt BA, Marshall LF. Early, routine paralysis for intracranial pressure control in severe head injury: is it necessary? Crit Care Med. 1994;22(9):1471–6.

    Article  CAS  PubMed  Google Scholar 

  155. Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011;10(10):931–41. Available from: https://doi.org/10.1016/S1474-4422(11)70178-8

    Article  PubMed  Google Scholar 

  156. Stevens RD, Dowdy DW, Michaels RK, Mendez-Tellez PA, Pronovost PJ, Needham DM. Neuromuscular dysfunction acquired in critical illness: a systematic review. Intensive Care Med. 2007;33(11):1876–91.

    Article  PubMed  Google Scholar 

  157. Sanfilippo F, Santonocito C, Veenith T, Astuto M, Maybauer MO. The role of neuromuscular blockade in patients with traumatic brain injury: a systematic review. Neurocrit Care. 2015;22(2):325–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron M. Gusdon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gusdon, A.M., Nyquist, P.A., Nelson, S.E. (2020). Management of Elevated Intracranial Pressure. In: Nelson, S., Nyquist, P. (eds) Neurointensive Care Unit. Current Clinical Neurology. Humana, Cham. https://doi.org/10.1007/978-3-030-36548-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36548-6_1

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-36547-9

  • Online ISBN: 978-3-030-36548-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics