Skip to main content

Hybridizing QCM with Dragonfly Algorithm to Enrich the Solution Searching Behaviors

  • Chapter
  • First Online:
Hybrid Intelligent Technologies in Energy Demand Forecasting
  • 287 Accesses

Abstract

As indicated in Chap. 4 that hybridizing different meta-heuristic algorithms [including gravitational search algorithm (GSA), cuckoo search algorithm (CSA), bat algorithm (BA), and fruit fly optimization algorithm (FOA)] with an SVR-based electric load forecasting model can receive superior forecasting performance than other competitive forecasting models (including ARIMA, HW, GRNN, and BPNN models).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dey S, Bhattacharyya S, Maulik U (2014) Quantum inspired genetic algorithm and particle swarm optimization using chaotic map model based interference for gray level image thresholding. Swarm and Evol Comput 15:38–57. https://doi.org/10.1016/j.swevo.2013.11.002

    Article  Google Scholar 

  2. Huang ML (2016) Hybridization of chaotic quantum particle swarm optimization with SVR in electric demand forecasting. Energies 9:426. https://doi.org/10.3390/en9060426

    Article  Google Scholar 

  3. Peng LL, Fan GF, Huang ML, Hong WC (2016) Hybridizing DEMD and quantum PSO with SVR in electric load forecasting. Energies 9:221. https://doi.org/10.3390/en9030221

    Article  Google Scholar 

  4. Li MW, Geng J, Wang S, Hong WC (2017) Hybrid chaotic quantum bat algorithm with SVR in electric load forecasting. Energies 10:2180. https://doi.org/10.3390/en10122180

    Article  Google Scholar 

  5. Li MW, Geng J, Hong WC, Zhang Y (2018) Hybridizing chaotic and quantum mechanisms and fruit fly optimization algorithm with least squares support vector regression model in electric load forecasting. Energies 11:2226. https://doi.org/10.3390/en11092226

    Article  Google Scholar 

  6. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  7. Cortés MAD, Ortega-Sánchez N, Hinojosa S, Oliva D, Cuevas E, Rojas R, Demin A (2018) A multi-level thresholding method for breast thermograms analysis using dragonfly algorithm. Infrared Phys Technol 93:346–361. https://doi.org/10.1016/j.infrared.2018.08.007

    Article  Google Scholar 

  8. Mafarja M, Aljarah I, Heidari AA, Faris H, Fournier-Viger P, Li X, Mirjalili S (2018) Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowl-Based Syst 161:185–204. https://doi.org/10.1016/j.knosys.2018.08.003

    Article  Google Scholar 

  9. Jafari M, Chaleshtari MHB (2017) Using dragonfly algorithm for optimization of orthotropic infinite plates with a quasi-triangular cut-out. Eur J Mech A Solids 66:1–14. https://doi.org/10.1016/j.euromechsol.2017.06.003

    Article  MathSciNet  MATH  Google Scholar 

  10. Ks SR, Murugan S (2017) Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Syst Appl 83:63–78. https://doi.org/10.1016/j.eswa.2017.04.033

    Article  Google Scholar 

  11. Ghanem WAHM, Jantan A (2018) A cognitively inspired hybridization of artificial bee colony and dragonfly algorithms for training multi-layer perceptrons. Cogn Comput 10(6):1096–1134. https://doi.org/10.1007/s12559-018-9588-3

    Article  Google Scholar 

  12. Hida T (1980) Brownian motion. Springer, New York, NY, USA. https://doi.org/10.1007/978-1-4612-6030-1

    Book  MATH  Google Scholar 

  13. El-Nabulsi RA (2011) The fractional Boltzmann transport equation. Comput Math Appl 62(3):1568–1575. https://doi.org/10.1016/j.camwa.2011.03.040

    Article  MathSciNet  MATH  Google Scholar 

  14. Hakli H, Uǧuz H (2014) A novel particle swarm optimization algorithm with Levy flight. Appl Soft Comput 23:333–345. https://doi.org/10.1016/j.asoc.2014.06.034

    Article  Google Scholar 

  15. Yang X (2010) Firefly algorithm, Levy flights and global optimization. In: Bramer M, Ellis R, Petridis M (eds) Research and development in intelligent systems XXVI. Springer, London, UK, pp 209–218. https://doi.org/10.1007/978-1-84882-983-1_15

    Google Scholar 

  16. Heidari A, Pahlavani P (2017) An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Appl Soft Comput 60:115–134. https://doi.org/10.1016/j.asoc.2017.06.044

    Article  Google Scholar 

  17. Barthelemy P, Bertolotti J, Wiersma DS (2008) A Lévy flight for light. Nature 453:495–498. https://doi.org/10.1038/nature06948

    Article  Google Scholar 

  18. Ranjini KSS, Murugan S (2017) Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Syst Appl 83:63–78. https://doi.org/10.1016/j.eswa.2017.04.033

    Article  Google Scholar 

  19. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Math Phys Eng Sci 454(1971):903–995. https://doi.org/10.1098/rspa.1998.0193

    Article  MathSciNet  MATH  Google Scholar 

  20. Fan GF, Peng LL, Zhao X, Hong WC (2017) Applications of hybrid EMD with PSO and GA for an SVR-based load forecasting model. Energies 10:1713. https://doi.org/10.3390/en10111713

    Article  Google Scholar 

  21. Fan G, Peng LL, Hong WC, Sun F (2016) Electric load forecasting by the SVR model with differential empirical mode decomposition and auto regression. Neurocomputing 173:958–970. https://doi.org/10.1016/j.neucom.2015.08.051

    Article  Google Scholar 

  22. Fan G, Wang H, Qing S, Hong WC, Li HJ (2013) Support vector regression model based on empirical mode decomposition and auto regression for electric load forecasting. Energies 6:1887–1901. https://doi.org/10.3390/en6041887

    Article  Google Scholar 

  23. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41. https://doi.org/10.1142/S1793536909000047

    Article  Google Scholar 

  24. Wang J, Luo Y, Tang L, Ge P (2018) A new weighted CEEMDAN-based prediction model: an experimental investigation of decomposition and non-decomposition approaches. Knowl-Based Syst 160:188–199. https://doi.org/10.1016/j.enconman.2017.01.022

    Article  Google Scholar 

  25. Yeh JR, Shieh JS, Huang NE (2010) Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv Adapt Data Anal 2:135–156. https://doi.org/10.1142/S1793536910000422

    Article  MathSciNet  Google Scholar 

  26. Torres ME, Colominas MA, Schlotthauer G, Flandrin P (2011) A complete ensemble empirical mode decomposition with adaptive noise. In: Proceeding of the IEEE international conference on acoustics, speech and signal processing, pp 4144–4147. https://doi.org/10.1109/icassp.2011.5947265

  27. National Grid UK official web site: https://www.nationalgrid.com/uk

  28. Hong WC (2011) Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 74:2096–2107. https://doi.org/10.1016/j.neucom.2010.12.032

    Article  Google Scholar 

  29. Chen R, Liang CY, Hong WC, Gu DX (2015) Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm. Appl Soft Comput 26:435–443. https://doi.org/10.1016/j.asoc.2014.10.022

    Article  Google Scholar 

  30. Pai PF, Hong WC (2005) Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Convers Manag 46(17):2669–2688. https://doi.org/10.1016/j.enconman.2005.02.004

    Article  Google Scholar 

  31. Pai PF, Hong WC (2005) Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms. Electr Power Syst Res 74(3):417–425. https://doi.org/10.1016/j.epsr.2005.01.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chiang Hong .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, WC. (2020). Hybridizing QCM with Dragonfly Algorithm to Enrich the Solution Searching Behaviors. In: Hybrid Intelligent Technologies in Energy Demand Forecasting. Springer, Cham. https://doi.org/10.1007/978-3-030-36529-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36529-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36528-8

  • Online ISBN: 978-3-030-36529-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics