Skip to main content

Introduction

  • Chapter
  • First Online:
  • 291 Accesses

Abstract

Electrical energy could be hardly stocked; therefore, electric load forecasting plays a vital role in the daily operational management of power utility, such as load unit commitment, energy transfer scheduling, contingency planning load shedding, energy generation, load dispatch, power system operation security, hydrothermal coordination, and so on (Xiao et al. in Energy 82:524–549, 2015 [1], Wan et al. in Power Energy Syst 1:38–46, 2015 [2]), to guarantee energy reliable and sufficient supply without interruptions. Particularly, in the power market free competitive era, the advanced forecasting technology can successfully assist planning the electric system expansion, well designed electric load flow, and can ensure the economical operation security and control of the electrical systems. In addition, with the emergence of load management strategies, it is highly desirable to develop accurate, fast, simple, robust and interpretable load forecasting models for these electric utilities to achieve the purposes of higher reliability and management efficiency. Therefore, it is essential that every utility can forecast its demands accurately.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xiao L, Wang J, Hou R, Wu J (2015) A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting. Energy 82:524–549. https://doi.org/10.3390/en10122180

    Article  Google Scholar 

  2. Wan C, Zhao J, Member S, Song Y (2015) Photovoltaic and solar power forecasting for smart grid energy management. CSEE J Power Energy Syst 1:38–46. https://doi.org/10.17775/CSEEJPES.2015.00046

    Article  Google Scholar 

  3. Hong WC (2013) Intelligent energy demand forecasting. Springer, London, UK

    Book  Google Scholar 

  4. Bunn DW, Farmer ED (1985) Comparative models for electrical load forecasting. Wiley, New York, USA

    Google Scholar 

  5. Bunn DW (2000) Forecasting loads and prices in competitive power markets. Proc IEEE 88:163–169. https://doi.org/10.1109/5.823996

    Article  Google Scholar 

  6. Xiao L, Shao W, Liang T, Wang C (2016) A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting. Appl Energy 167:135–153. https://doi.org/10.1016/j.apenergy.2016.01.050

    Article  Google Scholar 

  7. Hong WC, Dong Y, Zhang WY, Chen LY, Panigrahi BK (2013) Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm. Int J Electr Power Energy Syst 44:604–614. https://doi.org/10.1016/j.ijepes.2012.08.010

    Article  Google Scholar 

  8. Fan G, Peng LL, Hong WC, Sun F (2016) Electric load forecasting by the SVR model with differential empirical mode decomposition and auto regression. Neurocomputing 173:958–970. https://doi.org/10.1016/j.neucom.2015.08.051

    Article  Google Scholar 

  9. Wang J, Wang J, Li Y, Zhu S, Zhao J (2014) Techniques of applying wavelet de-noising into a combined model for short-term load forecasting. Int J Electr Power Energy Syst 62:816–824. https://doi.org/10.1016/j.ijepes.2014.05.038

    Article  Google Scholar 

  10. Ju FY, Hong WC (2013) Application of seasonal SVR with chaotic gravitational search algorithm in electricity forecasting. Appl Math Model 37:9643–9651. https://doi.org/10.1016/j.apm.2013.05.016

    Article  MathSciNet  MATH  Google Scholar 

  11. Tarsitano A, Amerise IL (2017) Short-term load forecasting using a two-stage sarimax model. Energy 133:108–114. https://doi.org/10.1016/j.energy.2017.05.126

    Article  Google Scholar 

  12. Taylor JW, McSharry PE (2008) Short-term load forecasting methods: an evaluation based on European data. IEEE Trans Power Syst 22:2213–2219. https://doi.org/10.1109/TPWRS.2007.907583

    Article  Google Scholar 

  13. Boroojeni KG, Amini MH, Bahrami S, Iyengar SS, Sarwat AI, Karabasoglu O (2017) A novel multi-time-scale modeling for electric power demand forecasting: from short-term to medium-term horizon. Electr Power Syst Res 142:58–73. https://doi.org/10.1016/j.epsr.2016.08.031

    Article  Google Scholar 

  14. Hussain A, Rahman M, Memon JA (2016) Forecasting electricity consumption in Pakistan: the way forward. Energy Policy 90:73–80. https://doi.org/10.1016/j.enpol.2015.11.028

    Article  Google Scholar 

  15. Pappas SS, Ekonomou L, Karampelas P, Karamousantas DC, Katsikas SK, Chatzarakis GE, Skafidas PD (2010) Electricity demand load forecasting of the Hellenic power system using an ARMA model. Electr Power Syst Res 80:256–264. https://doi.org/10.1016/j.epsr.2009.09.006

    Article  Google Scholar 

  16. Dudek G (2016) Pattern based local linear regression models for short term load forecasting. Electr Power Syst Res 130:139–147. https://doi.org/10.1016/j.epsr.2015.09.001

    Article  Google Scholar 

  17. Zamo M, Mestre O, Arbogast P, Pannekoucke O (2014) A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, Part I: deterministic forecast of hourly production. Sol Energy 105:792–803. https://doi.org/10.1016/j.solener.2013.12.006

    Article  Google Scholar 

  18. Wu J, Wang J, Lu H, Dong Y, Lu X (2013) Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model. Energy Convers Manage 70:1–9. https://doi.org/10.1016/j.enconman.2013.02.010

    Article  Google Scholar 

  19. Vu DH, Muttaqi KM, Agalgaonkar AP (2015) A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Appl Energy 140:385–394. https://doi.org/10.1016/j.apenergy.2014.12.011

    Article  Google Scholar 

  20. Dong Z, Yang D, Reindl T, Walsh WM (2013) Short-term solar irradiance forecasting using exponential smoothing state space model. Energy 55:1104–1113. https://doi.org/10.1016/j.energy.2013.04.027

    Article  Google Scholar 

  21. de Oliveira EM, Oliveira FLC (2018) Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy 144:776–788. https://doi.org/10.1016/j.energy.2017.12.049

    Article  Google Scholar 

  22. Maçaira PM, Souza RC, Oliveira FLC (2015) Modelling and forecasting the residential electricity consumption in Brazil with pegels exponential smoothing techniques. Procedia Comput Sci 55:328–335. https://doi.org/10.1016/j.procs.2015.07.057

    Article  Google Scholar 

  23. Al-Hamadi HM, Soliman SA (2004) Short term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model. Electr Power Syst Res 68:47–59. https://doi.org/10.1016/S0378-7796(03)00150-0

    Article  Google Scholar 

  24. Al-Hamadi HM, Soliman SA (2006) Fuzzy short-term electric load forecasting using Kalman filter. IEE Proc Gener Transm Distrib 153:217–227. https://doi.org/10.1049/ip-gtd:20050088

    Article  Google Scholar 

  25. Takeda H, Tamura Y, Sato S (2016) Using the ensemble Kalman filter for electricity load forecasting and analysis. Energy 104:184–198. https://doi.org/10.1016/j.energy.2016.03.070

    Article  Google Scholar 

  26. Hippert HS, Taylor JW (2010) An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short term load forecasting. Neural Netw 23:386–395. https://doi.org/10.1016/j.neunet.2009.11.016

    Article  Google Scholar 

  27. Niu DX, Shi HF, Wu DD (2012) Short-term load forecasting using Bayesian neural networks learned by hybrid Monte Carlo algorithm. Appl Soft Comput 12:1822–1827. https://doi.org/10.1016/j.asoc.2011.07.001

    Article  Google Scholar 

  28. Zhang W, Yang J (2015) Forecasting natural gas consumption in China by Bayesian model averaging. Energy Rep 1:216–220. https://doi.org/10.1016/j.egyr.2015.11.001

    Article  Google Scholar 

  29. Li Y, Jiang X, Zhu H, He X, Peeta S (2016) Multiple measures-based chaotic time series for traffic flow prediction based on Bayesian theory. Nonlinear Dyn 85:179–194. https://doi.org/10.1007/s11071-016-2677-5

    Article  MathSciNet  MATH  Google Scholar 

  30. Li MW, Geng J, Wang S, Hong WC (2017) Hybrid chaotic quantum bat algorithm with SVR in electric load forecasting. Energies 10(12):2180. https://doi.org/10.3390/en10122180

    Article  Google Scholar 

  31. Kelo S, Dudul S (2012) A wavelet Elman neural network for short term electrical load prediction under the influence of temperature. Int J Electr Power Energy Syst 43:1063–1071. https://doi.org/10.1016/j.ijepes.2012.06.009

    Article  Google Scholar 

  32. Dong Y, Zhang Z, Hong WC (2018) A hybrid seasonal mechanism with a chaotic cuckoo search algorithm with a support vector regression model for electric load forecasting. Energies 11(4):1009

    Article  Google Scholar 

  33. Singh P, Dwivedi P (2018) Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem. Appl Energy 217:537–549. https://doi.org/10.1016/j.apenergy.2018.02.131

    Article  Google Scholar 

  34. Hernández L, Baladrón C, Aguiar JM, Carro B, Sánchez-Esguevillas A, Lloret J (2014) Artificial neural networks for short-term load forecasting in microgrids environment. Energy 75:252–264. https://doi.org/10.1016/j.energy.2014.07.065

    Article  Google Scholar 

  35. Ghofrani M, Ghayekhloo M, Arabali A, Ghayekhloo A (2015) A hybrid short-term load forecasting with a new input selection framework. Energy 81:777–786. https://doi.org/10.1016/j.energy.2015.01.028

    Article  Google Scholar 

  36. Khwaja AS, Zhang X, Anpalagan A, Venkatesh B (2017) Boosted neural networks for improved short-term electric load forecasting. Electr Power Syst Res 143:431–437. https://doi.org/10.1016/j.epsr.2016.10.067

    Article  Google Scholar 

  37. Li HZ, Guo S, Li CJ, Sun JQ (2013) A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowl-Based Syst 37:378–387. https://doi.org/10.1016/j.knosys.2012.08.015

    Article  Google Scholar 

  38. Ertugrul ÖF (2016) Forecasting electricity load by a novel recurrent extreme learning machines approach. Int J Electr Power Energy Syst 78:429–435. https://doi.org/10.1016/j.ijepes.2015.12.006

    Article  Google Scholar 

  39. Lusis P, Khalilpour KR, Andrew L, Liebman A (2017) Short term residential load forecasting: impact of calendar effects and forecast granularity. Appl Energy 205:654–669. https://doi.org/10.1016/j.apenergy.2017.07.114

    Article  Google Scholar 

  40. Duan Q, Liu J, Zhao D (2017) Short term electric load forecasting using an automated system of model choice. Int J Electr Power Energy Syst 91:92–100. https://doi.org/10.1016/j.ijepes.2017.03.006

    Article  Google Scholar 

  41. Karimi M, Karami H, Gholami M, Khatibzadehazad H, Moslemi N (2018) Priority index considering temperature and date proximity for selection of similar days in knowledge-based short term load forecasting method. Energy 144:928–940. https://doi.org/10.1016/j.energy.2017.12.083

    Article  Google Scholar 

  42. Bennett CJ, Stewart RA, Lu JW (2014) Forecasting low voltage distribution network demand profiles using a pattern recognition based expert system. Energy 67:200–212. https://doi.org/10.1016/j.energy.2014.01.032

    Article  Google Scholar 

  43. Lahouar A, Slama JBH (2015) Day-ahead load forecast using random forest and expert input selection. Energy Convers Manag 103:1040–1051. https://doi.org/10.1016/j.enconman.2015.07.041

    Article  Google Scholar 

  44. Lou CW, Dong MC (2015) A novel random fuzzy neural networks for tackling uncertainties of electric load forecasting. Int J Electr Power Energy Syst 73:34–44. https://doi.org/10.1016/j.ijepes.2015.03.003

    Article  Google Scholar 

  45. Chaturvedi DK, Sinha AP, Malik OP (2015) Short term load forecast using fuzzy logic and wavelet transform integrated generalized neural network. Int J Electr Power Energy Syst 67:230–237. https://doi.org/10.1016/j.ijepes.2014.11.027

    Article  Google Scholar 

  46. Sadaei HJ, Guimarães FG, da Silva CJ, Lee MH, Eslami T (2017) Short-term load forecasting method based on fuzzy time series, seasonality and long memory process. Int J Approx Reason 83:196–217. https://doi.org/10.1016/j.ijar.2017.01.006

    Article  MathSciNet  MATH  Google Scholar 

  47. Efendi R, Ismail Z, Deris MM (2015) A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand. Appl Soft Comput 28:422–430. https://doi.org/10.1016/j.asoc.2014.11.043

    Article  Google Scholar 

  48. Akdemir B, Çetinkaya N (2012) Long-term load forecasting based on adaptive neural fuzzy inference system using real energy data. Energy Procedia 14:794–799. https://doi.org/10.1016/j.egypro.2011.12.1013

    Article  Google Scholar 

  49. Hua JC, Noorian F, Moss D, Leong PHW, Gunaratne GH (2017) High-dimensional time series prediction using kernel-based Koopman mode regression. Nonlinear Dyn 90:1785–1806. https://doi.org/10.1007/s11071-017-3764-y

    Article  MATH  Google Scholar 

  50. Bahrami S, Hooshmand RA, Parastegari M (2014) Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm. Energy 72:434–442. https://doi.org/10.1016/j.energy.2014.05.065

    Article  Google Scholar 

  51. Hooshmand RA, Amooshahi H, Parastegari M (2013) A hybrid intelligent algorithm based short-term load forecasting approach. Int J Electr Power Energy Syst 45:313–324. https://doi.org/10.1016/j.ijepes.2012.09.002

    Article  Google Scholar 

  52. Mahmoud TS, Habibi D, Hassan MY, Bass O (2015) Modelling self-optimised short term load forecasting for medium voltage loads using tunning fuzzy systems and artificial neural networks. Energy Convers Manag 106:1396–1408. https://doi.org/10.1016/j.enconman.2015.10.066

    Article  Google Scholar 

  53. Hanmandlu M, Chauhan BK (2011) Load forecasting using hybrid models. IEEE Trans Power Syst 26:20–29. https://doi.org/10.1109/TPWRS.2010.2048585

    Article  Google Scholar 

  54. Li S, Wang P, Goel L (2015) Short-term load forecasting by wavelet transform and evolutionary extreme learning machine. Electr Power Syst Res 122:96–103. https://doi.org/10.1016/j.epsr.2015.01.002

    Article  Google Scholar 

  55. Suykens JAK, Vandewalle J, De Moor B (2001) Optimal control by least squares support vector machines. Neural Netw 14:23–35. https://doi.org/10.1016/S0893-6080(00)00077-0

    Article  Google Scholar 

  56. Aras S, Kocakoç ID (2016) A new model selection strategy in time series forecasting with artificial neural networks: IHTS. Neurocomputing 174:974–987. https://doi.org/10.1016/j.neucom.2015.10.036

    Article  Google Scholar 

  57. Sankar R, Sapankevych NI (2009) Time series prediction using support vector machines: a survey. IEEE Comput Intell Mag 4:24–38. https://doi.org/10.1109/MCI.2009.932254

    Article  Google Scholar 

  58. Hahn H, Meyer-Nieberg S, Pickl S (2009) Electric load forecasting methods: tools for decision making. Eur J Oper Res 199:902–907. https://doi.org/10.1016/j.ejor.2009.01.062

    Article  MATH  Google Scholar 

  59. Panapakidis IP, Dagoumas AS (2016) Day-ahead electricity price forecasting via the application of artificial neural network based models. Appl Energy 172:132–151. https://doi.org/10.1016/j.apenergy.2016.03.089

    Article  Google Scholar 

  60. Vapnik V (1998) Statistical learning theory. Wiley, New York, NY, USA

    MATH  Google Scholar 

  61. Vapnik V (2000) The nature of statistical learning theory, 2nd edn. Springer, New York, NY, USA

    Book  Google Scholar 

  62. Scholkopf B, Smola AJ (2002) Learning with Kernels: support vector machines, regularization, optimization, and beyond. The MIT Press, Cambridge, MA, USA

    Google Scholar 

  63. Vapnik V, Golowich S, Smola A (1996) Support vector machine for function approximation, regression estimation, and signal processing. Adv Neural Inf Process Syst 9:281–287

    Google Scholar 

  64. Sermpinis G, Stasinakis C, Hassanniakalager A (2017) Reverse adaptive krill herd locally weighted support vector regression for forecasting and trading exchange traded funds. Eur J Oper Res 263:540–558. https://doi.org/10.1016/j.ejor.2017.06.019

    Article  MathSciNet  MATH  Google Scholar 

  65. Sermpinis G, Stasinakis C, Rosillo R, de la Fuente D (2017) European exchange trading funds trading with locally weighted support vector regression. Eur J Oper Res 258:372–384. https://doi.org/10.1016/j.ejor.2016.09.005

    Article  MathSciNet  MATH  Google Scholar 

  66. Sermpinis G, Stasinakis C, Theofilatos K, Karathanasopoulos A (2015) Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms—support vector regression forecast combinations. Eur J Oper Res 247:831–846. https://doi.org/10.1016/j.ejor.2015.06.052

    Article  MathSciNet  MATH  Google Scholar 

  67. Fu S, Li Y, Sun S, Li H (2019) Evolutionary support vector machine for RMB exchange rate forecasting. Physica A 521:692–704. https://doi.org/10.1016/j.physa.2019.01.026

    Article  Google Scholar 

  68. Luo L, You S, Xu Y, Peng H (2017) Improving the integration of piece wise linear representation and weighted support vector machine for stock trading signal prediction. Appl Soft Comput 56:199–216. https://doi.org/10.1016/j.asoc.2017.03.007

    Article  Google Scholar 

  69. Chang PC, Wu JL, Lin JJ (2016) A Takagi-Sugeno fuzzy model combined with a support vector regression for stock trading forecasting. Appl Soft Comput 38:831–842. https://doi.org/10.1016/j.asoc.2015.10.030

    Article  Google Scholar 

  70. Kao LJ, Chiu CC, Lu CJ, Yang JL (2013) Integration of nonlinear independent component analysis and support vector regression for stock price forecasting. Neurocomputing 99:534–542. https://doi.org/10.1016/j.neucom.2012.06.037

    Article  Google Scholar 

  71. Kazem A, Sharifi E, Hussain FK, Saberi M, Hussain OK (2013) Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl Soft Comput 13:947–958. https://doi.org/10.1016/j.asoc.2012.09.024

    Article  Google Scholar 

  72. Lahmiri S (2018) Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression. Appl Math Comput 320:444–451. https://doi.org/10.1016/j.amc.2017.09.049

    Article  MathSciNet  MATH  Google Scholar 

  73. Antonanzas J, Urraca R, Martinez-De-Pison FJ, Antonanzas-Torres F (2015) Solar irradiation mapping with exogenous data from support vector regression machines estimations. Energy Convers Manag 100:380–390. https://doi.org/10.1016/j.enconman.2015.05.028

    Article  Google Scholar 

  74. Ayodele TR, Ogunjuyigbe ASO, Amedu A, Munda JL (2019) Prediction of global solar irradiation using hybridized k-means and support vector regression algorithms. Renew Energy Focus 29:78–93. https://doi.org/10.1016/j.ref.2019.03.003

    Article  Google Scholar 

  75. Shang C, Wei P (2018) Enhanced support vector regression based forecast engine to predict solar power output. Renew Energy 127:269–283. https://doi.org/10.1016/j.renene.2018.04.067

    Article  Google Scholar 

  76. Lin KP, Pai PF (2016) Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. J Clean Prod 134:456–462. https://doi.org/10.1016/j.jclepro.2015.08.099

    Article  Google Scholar 

  77. Hong WC (2011) Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 74:2096–2107. https://doi.org/10.1016/j.neucom.2010.12.032

    Article  Google Scholar 

  78. Hong WC (2012) Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting. Neural Comput Appl 21:583–593. https://doi.org/10.1007/s00521-010-0456-7

    Article  Google Scholar 

  79. Hong WC, Dong Y, Zheng F, Wei SY (2011) Hybrid evolutionary algorithms in a SVR traffic flow forecasting model. Appl Math Comput 217:6733–6747. https://doi.org/10.1016/j.amc.2011.01.073

    Article  MathSciNet  MATH  Google Scholar 

  80. Pai PF, Hong WC (2007) A recurrent support vector regression model in rainfall forecasting. Hydrol Process 21:819–827. https://doi.org/10.1002/hyp.6323

    Article  Google Scholar 

  81. Chu H, Wei J, Li T, Jia K (2016) Application of support vector regression for mid- and long-term runoff forecasting in “Yellow River Headwater” region. Procedia Eng 154:1251–1257. https://doi.org/10.1016/j.proeng.2016.07.452

    Article  Google Scholar 

  82. He Y, Yan Y, Wang X, Wang C (2019) Uncertainty forecasting for streamflow based on support vector regression method with fuzzy information granulation. Energy Procedia 158:6189–6194. https://doi.org/10.1016/j.egypro.2019.01.489

    Article  Google Scholar 

  83. Luo X, Yuan X, Zhu S, Xu Z, Meng L, Peng J (2019) A hybrid support vector regression framework for streamflow forecast. J Hydrol 568:184–193. https://doi.org/10.1016/j.jhydrol.2018.10.064

    Article  Google Scholar 

  84. Hosseini SM, Mahjouri N (2016) Integrating support vector regression and a geomorphologic artificial neural network for daily rainfall-runoff modeling. Appl Soft Comput 38:329–345. https://doi.org/10.1016/j.asoc.2015.09.049

    Article  Google Scholar 

  85. Yu PS, Yang TC, Chen SY, Kuo CM, Tseng HW (2017) Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting. J Hydrol 552:92–104. https://doi.org/10.1016/j.jhydrol.2017.06.020

    Article  Google Scholar 

  86. Xiang Y, Gou L, He L, Xia S, Wang W (2018) A SVR-ANN combined model based on ensemble EMD for rainfall prediction. Appl Soft Comput 73:874–883. https://doi.org/10.1016/j.asoc.2018.09.018

    Article  Google Scholar 

  87. Chen R, Liang CY, Hong WC, Gu DX (2015) Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm. Appl Soft Comput 26:435–443. https://doi.org/10.1016/j.asoc.2014.10.022

    Article  Google Scholar 

  88. Hong WC, Dong Y, Chen LY, Wei SY (2011) SVR with hybrid chaotic genetic algorithms for tourism demand forecasting. Appl Soft Comput 11:1881–1890. https://doi.org/10.1016/j.asoc.2010.06.003

    Article  Google Scholar 

  89. Hong WC, Fan GF (2019) Hybrid empirical mode decomposition with support vector regression model for short term load forecasting. Energies 12(6):1093. https://doi.org/10.3390/en12061093

    Article  Google Scholar 

  90. Li MW, Geng J, Hong WC, Zhang Y (2018) Hybridizing chaotic and quantum mechanisms and fruit fly optimization algorithm with least squares support vector regression model in electric load forecasting. Energies 11(9):2226. https://doi.org/10.3390/en11092226

    Article  Google Scholar 

  91. Fan GF, Peng LL, Zhao X, Hong WC (2017) Applications of hybrid EMD with PSO and GA for an SVR-based load forecasting model. Energies 10(11):1713. https://doi.org/10.3390/en10111713

    Article  Google Scholar 

  92. Peng LL, Fan GF, Huang ML, Hong WC (2016) Hybridizing DEMD and quantum PSO with SVR in electric load forecasting. Energies 9(3):221. https://doi.org/10.3390/en9030221

    Article  Google Scholar 

  93. Chen YH, Hong WC, Shen W, Huang NN (2016) Electric load forecasting based on LSSVM with fuzzy time series and global harmony search algorithm. Energies 9(2):70. https://doi.org/10.3390/en9020070

    Article  Google Scholar 

  94. Geng J, Huang ML, Li MW, Hong WC (2015) Hybridization of seasonal chaotic cloud simulated annealing algorithm in a SVR-based load forecasting model. Neurocomputing 151:1362–1373. https://doi.org/10.1016/j.neucom.2014.10.055

    Article  Google Scholar 

  95. Chen Y, Xu P, Chu Y, Li W, Wu Y, Ni L, Bao Y, Wang K (2017) Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings. Appl Energy 195:659–670. https://doi.org/10.1016/j.apenergy.2017.03.034

    Article  Google Scholar 

  96. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimization algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  97. Ks SR, Murugan S (2017) Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Syst Appl 83:63–78. https://doi.org/10.1016/j.eswa.2017.04.033

    Article  Google Scholar 

  98. Li MW, Hong WC, Geng J, Wang J (2017) Berth and quay crane coordinated scheduling using multi-objective chaos cloud particle swarm optimization algorithm. Neural Comput Appl 28(11):3163–3182. https://doi.org/10.1007/s00521-016-2226-7

    Article  Google Scholar 

  99. Zhang ZC, Hong WC (2019) Electric load forecasting by complete ensemble empirical model decomposition adaptive noise and support vector regression with quantum-based dragonfly algorithm. Nonlinear Dyn. https://doi.org/10.1007/s11071-019-05252-7

    Article  Google Scholar 

  100. Fan GF, Peng LL, Hong WC (2018) Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model. Appl Energy 224:13–33. https://doi.org/10.1016/j.apenergy.2018.04.075

    Article  Google Scholar 

  101. Zhai MY (2015) A new method for short-term load forecasting based on fractal interpretation and wavelet analysis. Int J Electr Power Energy Syst 69:241–245. https://doi.org/10.1016/j.ijepes.2014.12.087

    Article  Google Scholar 

  102. Che J, Wang J, Wang G (2012) An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting. Energy 37:657–664. https://doi.org/10.1016/j.energy.2011.10.034

    Article  Google Scholar 

  103. Aly HHH (2020) A novel approach for harmonic tidal currents constitutions forecasting using hybrid intelligent models based on clustering methodologies. Renew Energy 147:1554–1564. https://doi.org/10.1016/j.renene.2019.09.107

    Article  Google Scholar 

  104. Niu M, Sun S, Wu J, Yu L, Wang J (2016) An innovative integrated model using the singular spectrum analysis and nonlinear multi-layer perceptron network optimized by hybrid intelligent algorithm for short-term load forecasting. Appl Math Model 40:4079–4093. https://doi.org/10.1016/j.apm.2015.11.030

    Article  MathSciNet  Google Scholar 

  105. Hu Z, Bao Y, Xiong T, Chiong R (2015) Hybrid filter–wrapper feature selection for short-term load forecasting. Eng Appl Artif Intell 40:17–27. https://doi.org/10.1016/j.engappai.2014.12.014

    Article  Google Scholar 

  106. Li LL, Sun J, Wang C-H, Zhou YT, Lin KP (2019) Enhanced Gaussian process mixture model for short-term electric load forecasting. Inf Sci 477:386–398. https://doi.org/10.1016/j.ins.2018.10.063

    Article  Google Scholar 

  107. Brodowski S, Bielecki A, Filocha M (2017) A hybrid system for forecasting 24-h power load profile for Polish electric grid. Appl Soft Comput 58:527–539. https://doi.org/10.1016/j.asoc.2017.04.053

    Article  Google Scholar 

  108. Yu F, Xu X (2014) A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Appl Energy 134:102–113. https://doi.org/10.1016/j.apenergy.2014.07.104

    Article  Google Scholar 

  109. Che JX, Wang JZ (2014) Short-term load forecasting using a kernel-based support vector regression combination model. Appl Energy 132:602–609. https://doi.org/10.1016/j.apenergy.2014.07.064

    Article  Google Scholar 

  110. Liu N, Tang Q, Zhang J, Fan W, Liu J (2014) A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids. Appl Energy 129:336–345. https://doi.org/10.1016/j.apenergy.2014.05.023

    Article  Google Scholar 

  111. Boubaker S (2017) Identification of nonlinear Hammerstein system using mixed integer-real coded particle swarm optimization: application to the electric daily peak-load forecasting. Nonlinear Dyn 90:797–814. https://doi.org/10.1007/s11071-017-3693-9

    Article  Google Scholar 

  112. Singh P, Dwivedi P (2019) A novel hybrid model based on neural network and multi-objective optimization for effective load forecast. Energy 182:606–622. https://doi.org/10.1016/j.energy.2019.06.075

    Article  Google Scholar 

  113. Singh P, Dwivedi P, Kant V (2019) A hybrid method based on neural network and improved environmental adaptation method using controlled Gaussian mutation with real parameter for short-term load forecasting. Energy 174:460–477. https://doi.org/10.1016/j.energy.2019.02.141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, WC. (2020). Introduction. In: Hybrid Intelligent Technologies in Energy Demand Forecasting. Springer, Cham. https://doi.org/10.1007/978-3-030-36529-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36529-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36528-8

  • Online ISBN: 978-3-030-36529-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics