Skip to main content

Exploring the Potential Socio-economic and Physical Factors Causing Historical Wildfires in the Western USA

  • Chapter
  • First Online:
Regional Intelligence

Abstract

Wildfires are considered a devastating threat to natural ecosystems and human lives. Wildfires are complex phenomena, which depend on diverse factors including climatological factors, fuel availability and anthropogenic disturbance in many ways. The main objective of this study is (a) to identify the spatial autocorrelation of historical fire occurrences and (b) to explore the multilateral relationship between fire occurrence as the dependent variable and a set of independent variables reflecting human population patterns, vegetation types and climatological factors. In order to identify the spatial distribution of fire events, a cube hot spot analysis technique was applied to identify them within a span of 30 years (between 1984 and 2014). Thereafter, a Spatial Logistic Regression (SLR) was designed and applied to explore the potential relationship between the two sets of variables. Our findings reveal that fires relate distinctly to vegetation, and that, despite it being accidental, the presence of such vegetation together with other spatially continuous phenomena, lead to the clustering of fires on risk areas. Furthermore, that any socio-economical factor can be hardly conclusive. Our conclusions draw attention to the fact that fire protection policies, which have undergone diametrical changes over time, must be custom-made and characterised by assent on what actually is a hazard. Further discussions and recommendations drawn based on our results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dataset: http://www.census.gov/popest/data/intercensal/county/files/CO-EST00INT-AGESEX-5YR.

  2. 2.

    USDA Forest Service Geoportal: http://data.fs.usda.gov/geodata/edw/datasets.php.

  3. 3.

    USDA Forest Service FSTopo Drainage Line: http://data.fs.usda.gov/geodata/edw/datasets.php.

  4. 4.

    Northern Region Vegetation Mapping Program. http://www.fs.usda.gov/detailfull/r1/landmanagement/gis/cid=stelprdb5331054&width=ful.

  5. 5.

    PRISM Climate Group. http://prism.oregonstate.edu/recent/.

  6. 6.

    National Elevation Dataset (NED). https://www.sciencebase.gov/catalog/item/4f70a58ce4b058caae3f8ddb.

References

  • Agee, K. J. (1993). Fire ecology of Pacific northwest forests. Washington, DC: Island Press. Retrieved April 25, 2016, from https://www.researchgate.net/publication/43410231_Fire_Ecology_of_Pacific_Northwest_Forests.

  • Benavent-Corai, J., Rojo, C., Suárez-Torres, J., & Velasco-García, L. (2007). Scaling properties in forest fire sequences: The human role in the order of nature. Ecological Modelling, 205, 336–342.

    Article  Google Scholar 

  • Boychuk, D., Perera, A. H., Ter-Mikaelian, M. T., Martell, D. L., & Li, C. (1997). Modelling the effect of spatial scale and correlated fire disturbances on forest age distribution. Ecological Modelling, 95, 145–164.

    Article  Google Scholar 

  • Brohman, R. J., Bryant, L. D., Tart, D., Williams, C. K., Brewer, C. K., DiBenedetto, J. P., Schwind, B., Crowe, E., Girard, M. M., Gordon, H., & Sleavin, K. (2005). Existing vegetation classification and mapping technical guide: Version 1.0. US Department of Agriculture, Forest Service, Ecosystem Management Coordination Staff.

    Google Scholar 

  • California State Board of Forestry and Fire Protection. (2016, March). Program environmental impact report for the Vegetation Treatment Program. The California Department of Forestry & Fire Protection.

    Google Scholar 

  • Carcaillet, C., Bergeron, Y., Richard, P. J. H., Fréchette, B., Gauthier, S., & Prairie, Y. T. (2001). Change of fire frequency in the eastern Canadian boreal forests during the Holocene: Does vegetation composition or climate trigger the fire regime? Journal of Ecology, 89, 930–946.

    Article  Google Scholar 

  • Cardille, J. A., Ventura, S. J., & Turner, M. G. (2001). Environmental and social factors influencing wildfires in the Upper Midwest, United States. Ecological Applications, 11(1), 111–127. Retrieved April 24, 2016, from http://www.jstor.org/stable/3061060.

  • Clark, P. J., & Evans, F. C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(4), 445–453.

    Article  Google Scholar 

  • Clark, R. N., Swayze, G. A., Livo, K. E., Kokaly, R. F., King, T. V., Dalton, J. B., Vance, J. S., Rockwell, B. W., Hoefen, T., & McDougal, R. R. (2002). Surface reflectance calibration of terrestrial imaging spectroscopy data: A tutorial using AVIRIS. In: R. O. Green (Ed.), Proceedings of the 10th JPL Airborne Sciences Workshop. Jet Propulsion Laboratory, Pasadena, California.

    Google Scholar 

  • Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al. (2012). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 35, 001–020.

    Article  Google Scholar 

  • Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 027–046.

    Article  Google Scholar 

  • Fry, D. L., & Stephens, S. L. (2006). Influence of humans and climate on the fire history of a ponderosa pine-mixed conifer forest in the southeastern Klamath Mountains, California. Forest Ecology and Management, 223, 428–438.

    Article  Google Scholar 

  • Gauthier, S., Leduc, A., & Bergeron, Y. (1996). Forest dynamics modelling under natural fire cycles: A tool to define natural mosaic diversity for forest management. In: Global to Local: Ecological Land Classification (pp. 417–434). Dordrecht: Springer.

    Google Scholar 

  • Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel, M., & Lampin, C. (2013). A review of the main driving factors of forest fire ignition over Europe. Environmental Management, 51(3), 651–662. Retrieved May 4, 2013, from https://doi.org/10.1007/s00267-012-9961-z.

  • Granström, A., & Schimmel, J. (1993). Heat effects on seeds and rhizomes of a selection of boreal forest plants and potential reaction to fire. Oecologia, 94(3), 307–313.

    Google Scholar 

  • Hardy, C. C. (2005). Wildland fire hazard and risk: Problems, definitions, and context. Forest Ecology and Management, 211, 73–82.

    Article  Google Scholar 

  • He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W., & Lamont, B. B. (2012). Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytologist, 194, 751–759.

    Article  Google Scholar 

  • Heyerdahl, E. K., Brubaker, L. B., & Agee, J. K. (2001). Spatial controls of historical fire regimes: A multiscale example from the Interior West, USA. Ecology, 82(3), 660–678.

    Article  Google Scholar 

  • Kitzberger, T., & Veblen, T. T. (1997). Influences of humans and ENSO on fire history of Austrocedrus chilensis woodlands in northern Patagonia, Argentina. Ecoscience, 4, 508–520.

    Google Scholar 

  • Levin, S. A. (1992). The problem of pattern and scale in ecology: The Robert H. MacArthur award lecture. Ecology, 73, 1943–1967.

    Google Scholar 

  • Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres, 99, 14415–14428.

    Google Scholar 

  • Livneh, B., Rosenberg, E. A., Lin, C., Nijssen, B., Mishra, V., Andreadis, K. M., Maurer, E. P., & Lettenmaier, D. P. (2013). A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. Journal of Climate, 26(23), 9384–9392.

    Google Scholar 

  • McCullagh, P., & Nelder, J. (1989). Generalized linear models. Boca Raton: CRC Press.

    Book  Google Scholar 

  • McGarigal, K. (nd). Concepts of scale. Landscape ecology course notes. Amherst: Massachusetts University. Retrieved May 8, 2016, from http://www.umass.edu/landeco/teaching/landscape_ecology/schedule/chapter2_scale.pdf.

  • McGarigal, K., & Cushman, S. A. (2002). The gradient concept of landscape structure: Or, why are there so many patches. Available at the following website: http://www.umass.edu/landeco/pubs/pubs.html.

  • Moreno, M. V., Conedera, M., Chuvieco, E., & Pezzatti, G. B. (2014). Fire regime changes and major driving forces in Spain from 1968 to 2010. Environmental Science & Policy, 37, 11–22.

    Article  Google Scholar 

  • Narayanaraj, G., & Wimberly, M. C. (2012). Influences of forest roads on the spatial patterns of human- and lightning-caused wildfire ignitions. Applied Geography, 32, 878–888. https://doi.org/10.1016/j.apgeog.2011.09.004.

    Article  Google Scholar 

  • Nasi, R., Dennis, R., Meijaard, E., Applegate, G., & Moore, P. (2002). Forest fire and biological diversity. Unasylva 209 (Vol. 53). Adapted from an earlier report: Dennis, R., Meijaard, E., Applegate, G., Nasi, R., & Moore, P. (2001). Impact of human-caused fires on biodiversity and ecosystem functioning, and their causes in tropical, temperate and boreal forest biomes (CBD Technical Series No. 5). Montreal, Canada: Convention on Biological Diversity.

    Google Scholar 

  • Parisien, M.-A., & Moritz, M. A. (2009). Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs, 79, 127–154. https://doi.org/10.1890/07-1289.1.

    Article  Google Scholar 

  • Peterson, D. L., & Parker, V. T. (Eds.). (1998). Ecological scale: Theory and applications (615 p). New York: Columbia University Press.

    Google Scholar 

  • Pezzatti, G. (2011). Modeling plant biomass partitioning: Responses to environmental conditions and disturbance.

    Google Scholar 

  • Pezzatti, G. B., Zumbrunnen, T., Bürgi, M., Ambrosetti, P., & Conedera, M. (2013). Fire regime shifts as a consequence of fire policy and socio-economic development: An analysis based on the change point approach. Forest Policy and Economics, 29, 7–18.

    Article  Google Scholar 

  • Plucinski, M. P. (2012). A review of wildfire occurrence research (pp. 2–25). Canberra, Australia: CSIRO Ecosystem Sciences and CSIRO climate Adaptation Flagship, Bushfires Cooperative Research Center (CRC).

    Google Scholar 

  • Preisler, H. K., & Westerling, A. L. (2007). Statistical model for forecasting monthly large wildfire events in Western United States. Journal of Applied Meteorology and Climatology, 46, 1020–1030. https://doi.org/10.1175/JAM2513.1.

    Article  Google Scholar 

  • Pyne, S. J. (2015). A fire history of America, 1960–2013 (JFSP Project Number 10-S02-5). Retrieved April 26, 2016, from http://www.firescience.gov/projects/10-S-02-5/project/10-S-02-5_final_report.pdf.

  • Pyne, S. J., Andrews, P. L., &. Laven, R. D. (1996). Introduction to wildland fire (769 p). New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Radeloff, V. C., Hammer, R. B., & Stewart, S. I. (2004). Rural and suburban sprawl in the U.S. Midwest from 1940 to 2000 and its relation to forest fragmentation. Conservation Biology, in press.

    Google Scholar 

  • Riley, K. L., Abatzoglou, J. T., Grenfell, I. C., Klene, A. E., & Heinsch, F. A. (2014). The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984–2008: The role of temporal scale. International Journal of Wildland Fire.

    Google Scholar 

  • Schoennagel, T., Veblen, T. T., & Romme, W. H. (2004). The interaction of fire, fuels, and climate across rocky mountain forests. Bioscience, 54, 661–676.

    Google Scholar 

  • Swetnam, T. W., & Betancourt, J. L. (1998). Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. Journal of Climate, 11(12), 3128–3147.

    Article  Google Scholar 

  • Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(2), 234–240. Proceedings. International Geographical Union. Commission on Quantitative Methods. Retrieved April 29, 2016, from http://dds.cepal.org/infancia/guia-para-estimar-la-pobreza-infantil/bibliografia/capitulo-IV/Tobler%20Waldo%20%281970%29%20A%20computer%20movie%20simulation%20urban%20growth%20in%20the%20Detroit%20region.pdf.

  • United Nations, Department of Economic and Social Affairs, Population Division. (2014). World urbanization prospects: The 2014 revision, highlights (ST/ESA/SER.A/352). Retrieved November 23, 2016, from https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Highlights.pdf.

  • Westerling, A. L. R. (2016). Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150178. https://doi.org/10.1098/rstb.2015.0178.

    Article  Google Scholar 

  • West, A. M., Kumar, S., & Jarnevich, C. S. (2016). Regional modeling of large wildfires under current and potential future climates in Colorado and Wyoming, USA. Climatic Change, 134, 565–577. https://doi.org/10.1007/s10584-015-1553-5.

    Article  Google Scholar 

  • Zumbrunnen, T., Pezzatti, G. B., Menéndez, P., Bugmann, H., Bürgi, M., & Conedera, M. (2011). Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland. Forest Ecology and Management, 261, 2188–2199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Jokar Arsanjani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jokar Arsanjani, J., Vázquez, R.L. (2020). Exploring the Potential Socio-economic and Physical Factors Causing Historical Wildfires in the Western USA. In: Vaz, E. (eds) Regional Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-36479-3_6

Download citation

Publish with us

Policies and ethics