Skip to main content

Enhancement of Biogas Production from Plant Biomass Using Iron Nanoparticles

  • Conference paper
  • First Online:
Advanced Intelligent Systems for Sustainable Development (AI2SD’2019) (AI2SD 2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 624))

Abstract

Biogas production from plant biomass (Pharagmites australis and Eichornia crassipes) inoculated with fresh digestate from Daqahliyah Sugar Beet factory - Egypt bioreactors in the presence of iron oxide nanoparticles capped with ascorbic acid were investigated. The substrate was charged into batch digesters (syringes 20 ml) and 50, 100, 150, 200, 250 and 300 ppm of iron nanoparticles capped with ascorbic acid working suspension were added further and subjected to anaerobic conditions. The produced biogas was collected by the water displacement method and subsequently measured (ml). Results obtained showed that, maximum biogas production from Pharagmites australis was (31.10 ml/3.4 g P. australis) with 100 ppm of Fe3O4 NPs compared to control (18.07 ml/3.4 g P. australis), with enhancement percentage 72.11%. While maximum biogas production from Eichornia crassipes was (16.33 ml/3.4 g E. crassipes) compared to control (10.83 ml/3.4 g E. crassipes), with enhancement percentage 50.78%, after 25 days of incubation at temperature 35 °C and pH 7.2. It could be concluded that, biogas production from P. australis and E. crassipes in the presence of iron oxide nanoparticles capped with ascorbic acid have an important role and efficacy in the biogas generation quantity, unwanted biomass recycling and in terms of environmental pollution control and management that might have resulted from the domestic disposal of these unwanted plant biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jena, S., et al.: An experimental approach to produce biogas from semi dried banana leaves. Sustain. Energy Technol. Assess. 19, 173–178 (2017). https://doi.org/10.1016/j.seta.2017.01.001

    Article  Google Scholar 

  2. Kashyap, D.R., Dadhich, K., Sharma, S.: Biomethanation under psychrophilic conditions: a review. Biores. Technol. 87(2), 147–153 (2003). https://doi.org/10.1016/s0140-6701(03)82959-4

    Article  Google Scholar 

  3. DESA, U.: World Economic and Social Survey: Sustainable Development Challenges. UN DESA, New York (2013). https://sustainabledevelopment.un.org/content/documents/2843WESS2013.pdf

  4. Panwar, N., Kaushik, S., Kothari, S.: Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev. 15(3), 1513–1524 (2011). https://doi.org/10.1016/j.rser.2010.11.037

    Article  Google Scholar 

  5. Owusu, P.A., Asumadu-Sarkodie, S.: A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3(1), 1167990 (2016). https://doi.org/10.1080/23311916.2016.1167990

    Article  Google Scholar 

  6. Ben-Iwo, J., Manovic, V., Longhurst, P.: Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renew. Sustain. Energy Rev. 63, 172–192 (2016). https://doi.org/10.1016/j.rser.2016.05.050

    Article  Google Scholar 

  7. Horváth, I.S., et al.: Recent updates on biogas production-a review. Biofuel Res. J. 10, 394–402 (2016). https://doi.org/10.18331/BRJ2016.3.2.4

    Article  Google Scholar 

  8. Casals, E., et al.: Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production. Small 10(14), 2801–2808 (2014). https://doi.org/10.1002/smll.201303703

    Article  Google Scholar 

  9. Okudoh, V., et al.: The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: a review. Renew. Sustain. Energy Rev. 39, 1035–1052 (2014). https://doi.org/10.1016/j.rser.2014.07.142

    Article  Google Scholar 

  10. Rao, P.V., et al.: Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renew. Sustain. Energy Rev. 14(7), 2086–2094 (2010). https://doi.org/10.1016/j.rser.2010.03.031

    Article  Google Scholar 

  11. Sharma, A., et al.: Beyond biocontrol: water hyacinth-opportunities and challenges. J. Environ. Sci. Technol. 9(1), 26–48 (2016). https://doi.org/10.3923/jest.2016.26.48

    Article  Google Scholar 

  12. Pobeheim, H., et al.: Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Water Res. 45(2), 781–787 (2011). https://doi.org/10.1016/j.watres.2010.09.001

    Article  Google Scholar 

  13. Karlsson, A., et al.: Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. J. Biosci. Bioeng. 114(4), 446–452 (2012). https://doi.org/10.1016/j.jbiosc.2012.05.010

    Article  Google Scholar 

  14. Facchin, V., et al.: Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculum origin. Biochem. Eng. J. 70, 71–77 (2013). https://doi.org/10.1016/j.bej.2012.10.004

    Article  Google Scholar 

  15. Abdelsalam, E., et al.: Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew. Energy 87, 592–598 (2016). https://doi.org/10.1016/j.renene.2015.10.053

    Article  Google Scholar 

  16. Sreekanth, K., Sahu, D.: Effect of iron oxide nanoparticle in bio digestion of a portable food-waste digester. J. Chem. Pharm. Res. (2015). 7(9), 353–359. http://jocpr.com/vol7-iss9-2015/JCPR-

  17. Ganzoury, M.A., Allam, N.K.: Impact of nanotechnology on biogas production: a mini-review. Renew. Sustain. Energy Rev. 50, 1392–1404 (2015). https://doi.org/10.1016/j.rser.2015.05.073

    Article  Google Scholar 

  18. Osma, E., et al.: Assessment of heavy metal accumulations (Cd, Cr, Cu, Ni, Pb, and Zn) in vegetables and soils. Pol. J. Environ. Stud. 22(5) (2013). https://pdfs.semanticscholar.org/7c0d/8fb79ed3edd8dfdcdaaff3ebe057857bdec5.pdf

  19. Yousfi, R., et al.: Evaluating the Heavy Metals-Associated Ecological Risks in Soil and Sediments of a Decommissioned Tunisian Mine. Pol. J. Environ. Stud. 28(4), 2981–2993 (2019). https://doi.org/10.15244/pjoes/86198

  20. Kumar, P., et al.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48(8), 3713–3729 (2009). https://doi.org/10.1021/ie801542g

    Article  Google Scholar 

  21. Isci, A., Demirer, G.: Biogas production potential from cotton wastes. Renew. Energy 32(5), 750–757 (2007). https://doi.org/10.1016/j.renene.2006.03.018

    Article  Google Scholar 

  22. Youngsukkasem, S., et al.: Biogas production by encased bacteria in synthetic membranes: protective effects in toxic media and high loading rates. Environ. Technol. 34(13–14), 2077–2084 (2013). https://doi.org/10.1080/09593330.2013.770555

    Article  Google Scholar 

  23. Manimegalai, R., et al.: Isolation and identification of acetogenic and methanogenic bacteria from anoxic black sediments and their role in biogas production. Int. J. Plant Anim. Environ. Sci. 4(3), 156–164 (2014). http://www.ijpaes.com/…/605_pdf.pdf

  24. M Tóth, E., et al.: Practical Microbiology: based on the Hungarian practical notes entitled “Mikrobiológiai Laboratóriumi Gyakorlatok”. 2013, Eötvös Loránd Tudományegyetem. http://www.eltereader.hu/media/2014/05/Practical_microbiology_READER.pdf

  25. Srinivasan, R., et al.: Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS One 10(2), e0117617 (2015). https://doi.org/10.1371/journal.pone.0117617

    Article  Google Scholar 

  26. Xuan, S., et al.: Preparation of water-soluble magnetite nanocrystals through hydrothermal approach. J. Magn. Magn. Mater. 308(2), 210–213 (2007). https://doi.org/10.1016/j.jmmm.2006.05.017

    Article  Google Scholar 

  27. Eldin, A.S.: Effect of magnetite nanoparticles (Fe3O4) as nutritive supplement on pear saplings. Sciences 5(03), 777–785 (2015). http://www.curresweb.com/mejas/mejas/2015/777-785.pdf

  28. Gupta, K., Bersani, M., Darr, J.A.: Highly efficient electro-reduction of CO2 to formic acid by nano-copper. J. Mater. Chem. A 4(36), 13786–13794 (2016). https://doi.org/10.1039/C6TA04874A

    Article  Google Scholar 

  29. KŘÍŽOVÁ, H., Wiener, J.: Synthesis of silver nanoparticles using condensed and hydrolysable tannins. In: Conference Proceeding: Nanocon 2013 (2013). http://nanocon2014.tanger.cz/files/proceedings/14/reports/1917.pdf

  30. Kosse, P., Lübken, M., Wichern, M.: Selective inhibition of methanogenic archaea in leach bed systems by sodium 2-bromoethanesulfonate. Environ. Technol. Innov. 5, 199–207 (2016). https://doi.org/10.1016/j.eti.2016.03.003

  31. Barua, V.B., Goud, V.V., Kalamdhad, A.S.: Microbial pretreatment of water hyacinth for enhanced hydrolysis followed by biogas production. Renew. Energy 126, 21–29 (2018). https://doi.org/10.1016/j.renene.2018.03.028

    Article  Google Scholar 

  32. Jiménez, D.J., Chaves-Moreno, D., Van Elsas, J.D.: Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw. Sci. Rep. 5, 13845 (2015). https://doi.org/10.1038/srep13845

    Article  Google Scholar 

  33. Seadi, T., et al.: Biogas Handbook. University of Southern Denmark, Esbjerg, Denmark (2008). https://www.lemvigbiogas.com/BiogasHandbook.pdf

  34. Wirth, R., et al.: Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol. Biofuels 5(1), 41 (2012). https://doi.org/10.1186/1754-6834-5-41

    Article  Google Scholar 

  35. Deredjian, A., et al.: Occurrence of Stenotrophomonas maltophilia in agricultural soils and antibiotic resistance properties. Res. Microbiol. 167(4), 313–324 (2016). https://doi.org/10.1016/j.resmic.2016.01.001

    Article  Google Scholar 

  36. Huang, S., Sheng, P., Zhang, H.: Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Int. J. Mol. Sci. 13(3), 2563–2577 (2012). https://doi.org/10.3390/ijms13032563

    Article  Google Scholar 

  37. Dantur, K.I., et al.: Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express 5(1), 15 (2015). https://doi.org/10.1186/s13568-015-0101-z

    Article  Google Scholar 

  38. Gupta, V.K., et al.: The Handbook of Microbial Bioresources. CABI, Wallingford (2016). https://www.amazon.com/Handbook-Microbial-Bioresources-Vijal-Kumar/dp/178064521X

  39. Gundogdu, T.K., Azbar, N., Hallenbeck, P.: The optimization studies on selection of carbon sources for photofermentative hydrogen production by four new Isolates. J. Selcuk Univ. Nat. Appl. Sci. 379–388 (2013). http://hdl.handle.net/123456789/3747

  40. Gopinath, L., et al.: Hydrocarbon degradation and biogas production efficiency of bacteria isolated from petrol polluted soil. Res. J. Recent Sci. 4(9), 60–67 (2015). http://www.isca.in/rjrs/archive/v4/i9/10.ISCA-RJRS-2014-565.pdf

  41. Rezaee, A., et al.: Isolation and characterization of a novel denitrifying bacterium with high nitrate removal: Pseudomonas stutzeri. J. Environ. Health Sci. Eng. 7(4), 313–318 (2010). https://pdfs.semanticscholar.org/53b2/adb51cc0d2a22358492048ffd36c00b90e21.pdf

  42. Lin, Y.-F., Chen, K.-C.: Denitrification and methanogenesis in a co-immobilized mixed culture system. Water Res. 29(1), 35–43 (1995). https://doi.org/10.1016/0043-1354(94)00144-V

    Article  Google Scholar 

  43. Akunna, J.C., Bernet, N., Moletta, R.: Effect of nitrate on methanogenesis at low redox potential. Environ. Technol. 19(12), 1249–1254 (1998). https://doi.org/10.1080/09593331908616785

    Article  Google Scholar 

  44. Yang, T., et al.: Synthesis, characterization and self-assemblies of magnetite nanoparticles. Surf. Interface Anal.: Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces. https://doi.org/10.1002/sia.2329

  45. Smith, K.M., Guilard, R.: Handbook of Porphyrin Science With Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine—Volume 24: Coordination Chemistry and Materials. 2012, World Scientific. http://www.icpp-spp.org/general/Handbook_2009.pdf

  46. Thakkar, S., Wanjale, S., Panzade, P.: Green synthesis of gold nanoparticles using Colchicum autumnale and its characterization. Int. J. Adv. Res. 4(4), 596–607 (2016). https://doi.org/10.21474/IJAR01/257

    Article  Google Scholar 

  47. Wang, L., Zhao, W., Tan, W.: Bioconjugated silica nanoparticles: development and applications. Nano Res. 1(2), 99–115 (2008). https://doi.org/10.1007/s12274-008-8018-3

  48. Nallamuthu, I., Parthasarathi, A., Khanum, F.: Thymoquinone-loaded PLGA nanoparticles: antioxidant and anti-microbial properties. Int. Curr. Pharm. J. 2(12), 202–207 (2013). https://doi.org/10.3329/icpj.v2i12.17017

    Article  Google Scholar 

  49. Ahmad, M.I., Godara, N., Tanweer, S.M.: Implementation and optimizing methane content in biogas for the production of electricity. Int. J. Eng. Res. 4(06) (2015). https://www.ijert.org/research/implementation-and-optimizing-methane-content-in-biogas-for-the-production-of-electricity-IJERTV4IS061076.pdf

  50. Zada, B., Mahmood, T., Malik, S.: Effect of iron nanoparticles on hyacinths fermentation. Int. J. Sci. 2, 106–121 (2013). https://www.ijsciences.com/pub/pdf/V220131017.pdf

  51. Cotana, F., et al.: Sustainable ethanol production from common reed (Phragmites australis) through simultaneuos saccharification and fermentation. Sustainability 7(9), 12149–12163 (2015). https://doi.org/10.3390/su70912149

    Article  Google Scholar 

  52. Shuai, W., et al.: Life cycle assessment of common reed (Phragmites australis (Cav) Trin. ex Steud) cellulosic bioethanol in Jiangsu Province, China. Biomass and Bioenergy 92, 40–47 (2016). https://doi.org/10.1016/j.biombioe.2016.06.002

  53. Vaičekonytė, R., et al.: An exploration of common reed (Phragmites australis) bioenergy potential in North America. Mires and Peat 13(12), 1–9 (2014). http://mires-and-peat.net/media/map13/map_13_12.pdf

  54. Köbbing, J., Thevs, N., Zerbe, S.: The utilisation of reed (Phragmites australis): a review. Mires and Peat 13 (2013). http://mires-and-peat.net/media/map13/map_13_01.pdf

  55. Zhang, H., et al.: Effect of ferrous chloride on biogas production and enzymatic activities during anaerobic fermentation of cow dung and Phragmites straw. Biodegradation 27(2–3), 69–82 (2016). https://doi.org/10.1007/s10532-016-9756-7

    Article  Google Scholar 

  56. Hronich, J.E., et al.: Potential of Eichhornia crassipes for biomass refining. J. Ind. Microbiol. Biotechnol. 35(5), 393–402 (2008). https://doi.org/10.1007/s10295-008-0333-x

    Article  Google Scholar 

  57. Barua, V., Kalamdhad, A.: Water hyacinth to biogas: a review. Poll. Res. 35(3), 491–501 (2016). http://www.envirobiotechjournals.com/article_abstract.php?aid=7055&iid=214&jid=4

  58. Bhattacharya, A., Kumar, P.: Water hyacinth as a potential biofuel crop. Electron. J. Environ. Agric. Food Chem. 9(1), 112–122 (2010). https://pdfs.semanticscholar.org/8c30/cd516d3e44fe287ede582422b893287594f5.pdf

  59. Achmad, K.T.B., et al.: The effect of C/N ratios of a mixture of beef cattle feces and water hyacinth (Eichornia Crassipes) on the quality of biogas and sludge. Lucr. Stiintifice 55, 117–120 (2011). http://www.uaiasi.ro/zootehnie/Pdf/Pdf_Vol_55/Kurnani_Tubagus.pdf

  60. Nahar, K.: Biogas production from water hyacinth (Eichhornia Crassipes). Asian J. Appl. Sci. Eng. 1(1), 9–13 (2012). https://journals.abc.us.org/index.php/ajase/article/view/1.1.12/148

  61. Vijayanand, C., Singaravelu, M., Kamaraj, S.: Anaerobic Fermentation of Water Hyacinth for Biogas Genesis. https://doi.org/10.13140/rg.2.1.4992.9365

  62. Akula, V.R.: Wetland biomass-suitable for biogas production? (2013). http://hh.diva-portal.org/smash/get/diva2:625026/FULLTEXT01.pdf

  63. Mathew, A.K., et al.: Biogas production from locally available aquatic weeds of Santiniketan through anaerobic digestion. Clean Technol. Environ. Polic. 17(6), 1681–1688 (2015). https://doi.org/10.1007/s10098-014-0877-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Borady, O.M., Fawzy, M., Abedin, R.M.A., Salama, A.M. (2020). Enhancement of Biogas Production from Plant Biomass Using Iron Nanoparticles. In: Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2019). AI2SD 2019. Lecture Notes in Electrical Engineering, vol 624. Springer, Cham. https://doi.org/10.1007/978-3-030-36475-5_11

Download citation

Publish with us

Policies and ethics