Skip to main content

Design and Implementation of Non-intrusive Stationary Occupancy Count in Elevator with WiFi

  • Conference paper
  • First Online:
Broadband Communications, Networks, and Systems (Broadnets 2019)

Abstract

Wi-Fi Sensing has shown huge progress in last few years. Multiple Input and Multiple Output (MIMO) has opened a gateway of new generation of sensing capabilities. This can also be used as a passive surveillance technology which is non-intrusive meaning it is not a nuisance as it is not need the subjects to carry any dedicated device. In this thesis, we present a way to count crowd in the elevator non-intrusively with 5 GHz Wi-Fi signals. For this purpose, Channel State Information (CSI) is collected from the commercially available off-the-shelf (COTS) Wi-Fi devices setup in an elevator. Our goal is to Analyze the CSI of every subcarrier frequency and then count the occupancy in it with the help of Convolutional Neural Network (CNN). After CSI data collection, we normalize the data with Savitzky Golay method. Each CSI subcarrier data of all the samples is made mean centered and then outliers are removed by applying Hampel Filter. The resultant wave is decimated and divided into 5 equal length segments representing the human presence recorded in 5 s. Continuous wavelet frequency representations are generated for all segments of every CSI sub-carrier frequency waves. These frequency pattern images are then fed to the CNN model to generalize and classify what category of crowd they belong to. After training, the model can achieve the test accuracy of more than 90%.

This work is supported by NSFC Grants No. 61802299, 61772413, 61672424.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, M., Zhang, Z., Huang, K., Tan, T.: Estimating the number of people in crowded scenes by MID based foreground segmentation and head-shoulder detection. In: ICPR 2008. IEEE (2008)

    Google Scholar 

  2. Nichols, J.D., et al.: Multi-scale occupancy estimation and modelling using multiple detection methods. J. Appl. Ecol. 45(5), 1321–1329 (2008)

    Article  Google Scholar 

  3. Lin, S.-F., Chen, J.-Y., Chao, H.-X.: Estimation of number of people in crowded scenes using perspective transformation. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 31(6), 645–654 (2001)

    Article  Google Scholar 

  4. Kim, M., Kim, W., Kim, C.: Estimating the number of people in crowded scenes. In: Proceedings of the IS&T/SPIE Electronic Imaging, p. 78820L (2011)

    Google Scholar 

  5. Weppner, J., Lukowicz, P.: Bluetooth based collaborative crowd density estimation with mobile phones. In: PerCom 2013. IEEE (2013)

    Google Scholar 

  6. Schauer, L., Werner, M., Marcus, P.: Estimating crowd densities and pedestrian flows using Wi-Fi and Bluetooth. In: Mobiquitous 2014. ICST (2014)

    Google Scholar 

  7. Wang, J., Katabi, D.: Dude, where’s my card?: RFID positioning that works with multipath and NOLS. In: Proceedings of ACM SIGCOMM (2013)

    Google Scholar 

  8. Wang, J., Vasisht, D., Katabi, D.: RF-IDraw: virtual touch screen in the air using RF signals. In: Proceedings of ACM SIGCOMM (2015)

    Google Scholar 

  9. Wang, J., Xiong, J., Jiang, H., Chen, X., Fang, D.: D-Watch: embracing “Bad” multipaths for device-free localization with COTS RFID devices, pp. 253–266 (2016)

    Google Scholar 

  10. Wei, T., Zhang, X.: Gyro in the air: tracking 3D orientation of batteryless internet-of-things. In: Proceedings of ACM MobiCom, pp. 55–68 (2016)

    Google Scholar 

  11. Yang, L., Chen, Y., Li, X.-Y., Xiao, C., Li, M., Liu, Y.: Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices. In: Proceedings of ACM MobiCom (2014)

    Google Scholar 

  12. Ding, H., et al.: Human object estimation via backscattered radio frequency signal. In: INFOCOM 2015. IEEE (2015)

    Google Scholar 

  13. Wirz, M., Franke, T., Roggen, D., Mitleton-Kelly, E., Lukowicz, P., Troster, G.: Probing crowd density through smartphones in city-scale mass gatherings. EPJ Data Sci. 2(1), 1 (2013)

    Article  Google Scholar 

  14. Lam, K.P., et al.: Occupancy detection through an extensive environmental sensor network in an open-plan office building. IBPSA Build. Simul. 145, 1452–1459 (2009)

    Google Scholar 

  15. Jiang, C., Masood, M.K., Soh, Y.C., Li, H.: Indoor occupancy estimation from carbon dioxide concentration. Energy Build. 131, 132–141 (2016)

    Article  Google Scholar 

  16. Wang, S., Burnett, J., Chong, H.: Experimental validation of CO2-based occupancy detection for demand-controlled ventilation. Indoor Built Environ. 8(6), 377–391 (2000)

    Article  Google Scholar 

  17. Depatla, S., Muralidharan, A., Mostofi, Y.: Occupancy estimation using only WiFi power measurements. IEEE J. Sel. Areas Commun. 33(7), 1381–1393 (2015)

    Article  Google Scholar 

  18. Choi, J.W., Quan, X., Cho, S.H.: Bi-directional passing people counting system based on IR-UWB radar sensors. IEEE Internet Things J. 5, 512–522 (2017)

    Article  Google Scholar 

  19. Mohammadmoradi, H., Yin, S., Gnawali, O.: Room occupancy estimation through WiFi, UWB, and light sensors mounted on doorways. In: Proceedings of the 2017 International Conference on Smart Digital Environment, pp. 27–34 (2017)

    Google Scholar 

  20. Lv, H., et al.: Multi-target human sensing via UWB bio-radar based on multiple antennas. In: Proceedings of the IEEE TENCON, pp. 1–4 (2013)

    Google Scholar 

  21. He, J., Arora, A.: A regression-based radar-mote system for people counting. In: Proceedings of the IEEE PerCom, pp. 95–102 (2014)

    Google Scholar 

  22. Abdelnasser, H., Youssef, M., Harras, K.A.: WiGest: a ubiquitous WiFi-based gesture recognition system. In: Proceedings of IEEE INFOCOM (2015)

    Google Scholar 

  23. Chen, B., Yenamandra, V., Srinivasan, K.: Tracking keystrokes using wireless signals. In: Proceedings of ACM MobiSys (2015)

    Google Scholar 

  24. Ding, H., et al.: RFIPad: enabling cost-efficient and device-free in-air handwriting using passive tags. In: Proceedings of IEEE ICDCS (2017)

    Google Scholar 

  25. Li, H., Yang, W., Wang, J., Xu, Y., Huang, L.: WiFinger: talk to your smart devices with finger-grained gesture. In: Proceedings of ACM UbiComp (2016)

    Google Scholar 

  26. Lien, J., et al.: Soli: ubiquitous gesture sensing with millimeter wave radar. ACM Trans. Graph. 35(4), 142 (2016)

    Article  Google Scholar 

  27. Pu, Q., Gupta, S., Gollakota, S., Patel, S.: Whole-home gesture recognition using wireless signals. In: Proceedings of ACM MobiCom (2013)

    Google Scholar 

  28. Wang, W., Liu, A.X., Shahzad, M., Ling, K., Lu, S.: Understanding and modeling of WiFi signal based human activity recognition. In: Proceedings of ACM MobiCom (2015)

    Google Scholar 

  29. Xi, W., et al.: Electronic frog eye: counting crowd using WiFi. In: INFOCOM 2014. IEEE (2014)

    Google Scholar 

  30. Xu, C., et al.: SCPL: indoor device-free multi-subject counting and localization using radio signal strength. In: IPSN 2013. IEEE (2013)

    Google Scholar 

  31. Zheng, Y., Zhou, Z., Liu, Y.: From RSSI to CSI: indoor localization via channel response. ACM Comput. Surv. 46(2), 1–32 (2013)

    MATH  Google Scholar 

  32. Adib, F., Katabi, D.: See through walls with WiFi! ACM SIGCOMM Comput. Commun. Rev. 43(4), 75–86 (2013)

    Article  Google Scholar 

  33. Nakatani, T., Maekawa, T., Shirakawa, M., et al.: Estimating the physical distance between two locations with Wi-Fi received signal strength information using obstacle-aware approach. Proc. ACM on Interact. Mob. Wearable Ubiquit. Technol. 2(3), 1–26 (2018)

    Article  Google Scholar 

  34. Adib, F.: MIT. Wi-Vi: See Through Walls with Wi-Fi Signals [EB/OL], August 2013. http://people.csail.mit.edu/fadel/wivi/radar.png

  35. GitLab: PicoScenes Installation [EB/OL], 11 August 2018. http://gitlab.com/wifisensing/PicoScenes-Setup/

  36. Tamas, L., Lazea, G.: Pattern recognition and tracking dynamic objects with LIDAR. In: Robotics. VDE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, W., Tahir, U., Zhang, H., Zhao, J. (2019). Design and Implementation of Non-intrusive Stationary Occupancy Count in Elevator with WiFi. In: Li, Q., Song, S., Li, R., Xu, Y., Xi, W., Gao, H. (eds) Broadband Communications, Networks, and Systems. Broadnets 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 303. Springer, Cham. https://doi.org/10.1007/978-3-030-36442-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36442-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36441-0

  • Online ISBN: 978-3-030-36442-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics