Skip to main content

The Central-Field Approximation

  • Chapter
  • First Online:
  • 1018 Accesses

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 112))

Abstract

In the absence of theoretical tools for solving the Schrödinger equation, and with the shortcomings and/or complexities of the approximation methods described in the previous chapter, we will regroup and see if we, with a modified perturbative analysis, can gain more insight into multielectron atomic structure. We have seen that forming a zero-order Hamiltonian with only the electron–nucleus interactions taken into account yields separable zero-order basis functions but at a price. The approximation is crude and for all but the smallest atoms, the variational method becomes forbiddingly complex. In this chapter, we retain the ambition to have separable zero-order functions from a purely radial potential, but we do this without leaving the entire electron–electron interaction as a perturbation. In this central-field approximation, each electron is thought of as moving in a purely central potential and having a wave function akin to hydrogenic orbitals. For a multielectron atom, the zero-order approximation of its state is a product of electron orbitals, whose occupation numbers adhere to the Pauli principle. Such product states are electron configurations and with an understanding of ground state electron configurations, the periodic system of elements can be constructed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.D. Cowan, The theory of atomic structure and spectra (University of California press, Berkeley, 1981)

    Google Scholar 

  2. I. Lindgren, J. Morrison, Atomic Many-Body Theory, 2nd edn. (Springer Verlag, Berlin, 1986)

    Book  Google Scholar 

  3. G.W.F. Drake (ed.), Springer Handbook of Atomic, Molecular, and Optical Physics (Springer-Verlag, New York, 2006)

    Google Scholar 

  4. A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.3). [Online]. Available: http://physics.nist.gov/asd (2018). Accessed: 2019-07-14

  5. B.G.C. Lackenby, V.A. Dzuba, V.V. Flambaum, Phys. Rev. A 99, 042509 (2019)

    Article  ADS  Google Scholar 

  6. V.A. Dzuba, Phys. Rev. A 93, 032519 (2016)

    Article  ADS  Google Scholar 

  7. D. Hoffman, D. Lee, V. Pershina, in The Chemistry of the Actinide and Transactinide Elements, ed. by L. Morss, N. Edelstein, J. Fuger (Springer, Dordrecht, 2008), p. 1652

    Google Scholar 

  8. B.G.C. Lackenby, V.A. Dzuba, V.V. Flambaum, Phys. Rev. A 98, 042512 (2018)

    Article  ADS  Google Scholar 

  9. J.W. van Spronsen, The periodic system of chemical elements. A history of the first hundred years. (Elsevier, Amsterdam, 1969)

    Google Scholar 

  10. W.B. Jensen, Mendeleev and the periodic law (Dover publications, Mineola, 2002)

    Google Scholar 

  11. E.M. Henley, A. Garcia, Subatomic Physics, 3rd edn. (World Scientific, 2007)

    Google Scholar 

  12. P. Indelicato, J.P. Santos, S. Boucard, J.P. Desclaux, Eur. Phys. J. D 45, 155 (2007)

    Article  ADS  Google Scholar 

  13. Tanmoy Chakraborty, Kamarujjaman Gazi, Dulal C. Ghosh, Molecular Physics 108, 2081 (2010)

    Article  ADS  Google Scholar 

  14. M. Guerra, P. Amaro, J.P. Santos, P. Indelicato, Atomic Data and Nuclear Data Tables 117–118, 439 (2017)

    Article  ADS  Google Scholar 

  15. H.G. Kuhn, Atomic spectra (Longmans, London, 1969)

    Google Scholar 

  16. J.C. Slater, Quantum theory of atomic structure (McGraw-Hill, New York, 1960)

    MATH  Google Scholar 

  17. G.W.F. Drake, in Springer Handbook of Atomic, Molecular, and Optical Physics, ed. by G.W.F. Drake (Springer-Verlag, New York, 2006), p. 199

    Chapter  Google Scholar 

  18. V.A. Kostelecký, M.M. Nieto, Phys. Rev. A 32, 3243 (1985)

    Article  ADS  Google Scholar 

  19. I. Martin, International Journal of Quantum Chemistry 74, 479 (1999)

    Article  Google Scholar 

  20. E.U. Condon, G.H. Shortley, The theory of atomic spectra (Cambridge University Press, Cambridge, 1935)

    MATH  Google Scholar 

  21. M. Mizushima, Quantum mechanics of atomic spectra and atomic structure (W. A. Benjamin, New York, 1970)

    Google Scholar 

  22. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Prentice Hall, Harlow, England, 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kastberg, A. (2020). The Central-Field Approximation. In: Structure of Multielectron Atoms. Springer Series on Atomic, Optical, and Plasma Physics, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-030-36420-5_5

Download citation

Publish with us

Policies and ethics