Skip to main content

Exact Algorithms for the Bounded Repetition Longest Common Subsequence Problem

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11949))

  • 848 Accesses

Abstract

In this paper, we study exact, exponential-time algorithms for a variant of the classic Longest Common Subsequence problem called the r-Repetition Longest Common Subsequence problem (or r-RLCS, for short): Given two sequences X and Y over an alphabet S, find a longest common subsequence of X and Y such that each symbol appears at most r times in the obtained subsequence. Without loss of generality, we will assume that \(|X| \le |Y|\) from here on. The special case of 1-RLCS, also known as the Repetition-Free Longest Common Subsequence problem (RFLCS), has been studied previously; e.g., in [1], Adi et al. presented an (exponential-time) integer linear programming-based exact algorithm for 1-RLCS. However, they did not analyze its time complexity, and to the best of our knowledge, there are no previous results on the running times of any exact algorithms for this problem. In this paper, we first propose a simple algorithm for 1-RLCS based on the strategy used in [1] and show explicitly that its running time is bounded by \(O(1.44225^{|X|}|X||Y|)\). Next, we provide a DP-based algorithm for r-RLCS and prove that its running time is \(O((r+1)^{|X|/(r+1)}|X||Y|)\) for any \(r \ge 1\). In particular, our new algorithm runs in \(O(1.41422^{|X|}|X||Y|)\) time for 1-RLCS, which is faster than the previous one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, \(X_i\) denotes the ith subsequence in \(2^n\) subsequences in any order; on the other hand, in Sect. 3, \(X_i\) will be defined to be the ith prefix of X.

References

  1. Adi, S.S., et al.: Repetition-free longest common subsequence. Disc. Appl. Math. 158, 1315–1324 (2010)

    Article  MathSciNet  Google Scholar 

  2. Aho, A., Hopcroft, J., Ullman, J.: Data Structures and Algorithms. Addison-Wesley, Boston (1983)

    MATH  Google Scholar 

  3. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

    Article  Google Scholar 

  4. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: Proceedings of SPIRE, pp. 39–48 (2000)

    Google Scholar 

  5. Blin, G., Bonizzoni, P., Dondi, R., Sikora, F.: On the parameterized complexity of the repetition free longest common subsequence problem. Info. Proc. Lett. 112(7), 272–276 (2012)

    Article  MathSciNet  Google Scholar 

  6. Blum, C., Blesa, M.J., Calvo, B.: Beam-ACO for the repetition-free longest common subsequence problem. Proc. EA 2013, 79–90 (2014)

    Google Scholar 

  7. Blum, C., Blesa, M.J.: Construct, merge, solve and adapt: application to the repetition-free longest common subsequence problem. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 46–57. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30698-8_4

    Chapter  Google Scholar 

  8. Blum, C., Blesa, M.J.: A comprehensive comparison of metaheuristics for the repetition-free longest common subsequence problem. J. Heuristics 24(3), 551–579 (2018)

    Article  Google Scholar 

  9. Bonizzoni, P., Della Vedova, G., Dondi, R., Fertin, G., Rizzi, R., Vialette, S.: Exemplar longest common subsequence. IEEE/ACM Trans. Comput. Biol. Bioinf. 4(4), 535–543 (2007)

    Article  Google Scholar 

  10. Bonizzoni, P., Della Vedova, G., Dondi, R., Pirola, Y.: Variants of constrained longest common subsequence. Inf. Proc. Lett. 110(20), 877–881 (2010)

    Article  MathSciNet  Google Scholar 

  11. Bulteau, L., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Multivariate algorithmics for NP-hard string problems. The Algorithmics Column by Gerhard J Woeginger. Bulletin of EATCS, no. 114 (2014)

    Google Scholar 

  12. Castelli, M., Beretta, S., Vanneschi, L.: A hybrid genetic algorithm for the repetition free longest common subsequence problem. Oper. Res. Lett. 41(6), 644–649 (2013)

    Article  Google Scholar 

  13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  14. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. ACM 24(4), 664–675 (1977)

    Article  MathSciNet  Google Scholar 

  15. Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequences. Comm. ACM 18(6), 341–343 (1975)

    Article  MathSciNet  Google Scholar 

  16. Itoga, S.Y.: The string merging problem. BIT 21(1), 20–30 (1981)

    Article  MathSciNet  Google Scholar 

  17. Maier, D.: The complexity of some problems on subsequences and supersequences. J. ACM 25(2), 322–336 (1978)

    Article  MathSciNet  Google Scholar 

  18. Jiang, T., Li, M.: On the approximation of shortest common supersequences and longest common subsequences. SIAM J. Comput. 24(5), 1122–1139 (1995)

    Article  MathSciNet  Google Scholar 

  19. Morgan, H.L.: Spelling correction in systems programs. Comm. ACM 13(2), 90–94 (1970)

    Article  Google Scholar 

  20. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

    Article  Google Scholar 

  21. Sankoff, D.: Matching sequences under deletion/insertion constraints. Proc. Nat. Acad. Sci. U.S.A. 69(1), 4–6 (1972)

    Article  MathSciNet  Google Scholar 

  22. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917 (1999)

    Article  Google Scholar 

  23. Storer, J.A.: Data compression: methods and theory. Computer Science Press (1988)

    Google Scholar 

  24. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168–173 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by PolyU Fund 1-ZE8L, the Natural Sciences and Engineering Research Council of Canada, JST CREST JPMJR1402, and Grants-in-Aid for Scientific Research of Japan (KAKENHI) Grant Numbers JP17K00016, JP17K00024, JP17K19960 and JP17H01698.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Miyano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asahiro, Y., Jansson, J., Lin, G., Miyano, E., Ono, H., Utashima, T. (2019). Exact Algorithms for the Bounded Repetition Longest Common Subsequence Problem. In: Li, Y., Cardei, M., Huang, Y. (eds) Combinatorial Optimization and Applications. COCOA 2019. Lecture Notes in Computer Science(), vol 11949. Springer, Cham. https://doi.org/10.1007/978-3-030-36412-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36412-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36411-3

  • Online ISBN: 978-3-030-36412-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics