Skip to main content

Stress Characterization of Bore-Chilled Sand Cast Aluminum Engine Blocks in As-Cast and T7 Condition with Application of Neutron Diffraction

  • Conference paper
  • First Online:

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

In an effort to improve vehicle fuel efficiency, aluminum (Al) alloys have been gaining upward momentum for use in automotive powertrain components such as engine blocks. Al alloys are lightweight and have good mechanical strength at engine operating temperatures; making them a suitable choice for engine block production. However, during the manufacturing process factors such as inhomogeneous cooling rates and/or coefficients thermal expansion mismatches in multi-material castings can lead to the development of residual stress. This is of particular concern for the relatively thin cylinder bridges, which are exposed to large thermo-mechanical loading during engine operation. The casting process used at Nemak for I6 engine block production does not utilise cast-in liners and therefore may be also be suitable for future mass-produced linerless blocks. This paper utilizes neutron diffraction and SEM/EDS to determine how the elimination of cast-in liners as well as a T7 heat treatment effects the magnitude of residual stress in cast Al (A319 type alloy) engine blocks. It was observed that the T7 treatment resulted in a significant reduction of the strain/stress in the Al cylinder bridge (up to ~50% of the radial stress at the top of the bridge). In addition, the absence of the cast-in Fe liners allowed for unrestricted natural contraction of the Al bridge; leading to a combination of low tension and moderate compression as compared to the typically high tensile stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Davis & Associates. and ASM International. Handbook Committee.. ASM International, 1993.

    Google Scholar 

  2. J. Robinson and D. Tanner, “The Magnitude of Heat Treatment Induced Residual Stresses and the Thermal Stress Relief of Aluminium Alloys,” Mater. Sci. Forum, vol. 404–407, pp. 355–360, 2009.

    Google Scholar 

  3. A. Lombardi, C. Ravindran, D. Sediako, and R. MacKay, “Determining the Mechanism of In-Service Cylinder Distortion in Aluminum Engine Blocks with Cast-In Gray Iron Liners,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 45, no. 13, pp. 6291–6303, 2014.

    Google Scholar 

  4. B. Chen et al., “In situ neutron diffraction measurement of residual stress relaxation in a welded steel pipe during heat treatment,” Mater. Sci. Eng. A, 2014.

    Google Scholar 

  5. D. Lados, D. Apelian, and L. Wang, “Minimization of residual stress in heat-treated Al-Si-Mg cast alloys using uphill quenching: Mechanisms and effects on static and dynamic properties,” Mater. Sci. Eng. A, vol. 527, no. 13–14, pp. 3159–3165, 2010.

    Google Scholar 

  6. J. Rolph, A. Evans, A. Paradowska, M. Hofmann, M. Hardy, and M. Preuss, “Stress relaxation through ageing heat treatment - a comparison between in situ and ex situ neutron diffraction techniques,” Comptes Rendus Phys., vol. 13, no. 3, pp. 307–315, 2012.

    Google Scholar 

  7. L. Godlewski, X. Su, T. Pollock, and J. Allison, “The effect of aging on the relaxation of residual stress in cast aluminum,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 44, no. 10, pp. 4809–4818, 2013.

    Google Scholar 

  8. Lombardi A, Sediako D, Machin A, Ravindran C and MacKay R (2017) Effect of solution heat treatment on residual stress in Al alloy engine blocks using neutron diffraction, Mater. Sci. Eng. A, 697(May): 238–247.

    Google Scholar 

  9. Lombardi A, D’Elia F, Ravindran C, Sediako D, Murty B and MacKay R (2012) Interplay Between Residual Stresses, Microstructure, Process Variables and Engine Block Casting Integrity, Metall. Mater. Trans. A, 43(13): 5258–5270.

    Google Scholar 

  10. Byczynski G and Mackay R (2019) The nemak cosworth casting process latest generation, Shape Casting 7th International Symposium, Springer International Publishing: 179–185.

    Google Scholar 

  11. Stroh J, Piche A, Sediako D, Lombardi A, and Byczynski G (2019) The Effects of Solidification Cooling Rates on the Mechanical Properties of an A319 Inline-6 Engine Block, The Minerals, Metals & Materials Society (TMS), vol. Light Metals 2019: 505–512.

    Google Scholar 

  12. Sediako D, D’Elia F, Lombardi A, Machin A, Ravindran C, Hubbard C and Mackay R (2011) Analysis of Residual Stress Profiles in the Cylinder Web Region of an As-Cast V6 Al Engine Block with Cast-In Fe Liners Using Neutron Diffraction, SAE Int. J. Mater. Manuf., 4(1): 138–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sediako .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stroh, J., Sediako, D., Byczynski, G., Lombardi, A., Paradowska, A. (2020). Stress Characterization of Bore-Chilled Sand Cast Aluminum Engine Blocks in As-Cast and T7 Condition with Application of Neutron Diffraction. In: Tomsett, A. (eds) Light Metals 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36408-3_21

Download citation

Publish with us

Policies and ethics