Skip to main content

Part of the book series: Frontiers in Applied Dynamical Systems: Reviews and Tutorials ((FIADS,volume 6))

  • 962 Accesses

Abstract

There are important questions in the context of relaxation oscillatory behaviour observed in singularly perturbed systems that we have not addressed so far:

  • where do these oscillations originate from, i.e., what is the underlying mechanism that leads to the genesis of rhythmic behaviour?

  • how does the singular nature of the perturbation problem manifest itself in the rhythm generation?

Partial answers to the above questions can be found in classic bifurcation theory [63] which focuses on understanding significant changes in dynamical systems outputs under system parameter variations. The time-scale splitting in our singular perturbation problems creates additional complexity and sometimes surprising, counter-intuitive behaviour. We start with a couple of examples to motivate the development of the corresponding theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Variations in the dimensionless parameter μ could be interpreted as variations in the initial precursor concentration p 0.

  2. 2.

    The terminology ‘pseudo singularity’ was introduced by Jose Argemi [2].

  3. 3.

    The terminology ‘canard’ was introduced by Eric Benoit et al. [8]; see also Remark 6.5.

  4. 4.

    French: ‘faux’ = false as opposed to ‘vrai’ = true; the term ‘vrai’ is seldom used in the canard theory literature.

  5. 5.

    More generally, it is observed under variation along a path α(s), \(s\in I\subset {\mathbb R}\), in the corresponding system parameter space \(\alpha \in \mathbb {R}^p\), p ≥ 1.

  6. 6.

    Theorems 6.1 and 6.2 apply to the forced vdP oscillator (6.1) as well.

  7. 7.

    The original two-stroke oscillator model (2.28) is given by α = 1, β = 1, γ = 0 and δ = 1.

  8. 8.

    Displacement dependent normal forces arise frequently in engineering problems [1, 26, 42, 114].

  9. 9.

    For γ = 0, there is no equilibrium; compare with the original stick-slip oscillator model (2.28) analysis.

  10. 10.

    While the set L does not constitute a set of isolated singularities of N(s, x, y) as stated in Assumption 3.3, the theory presented is still valid since s is a ‘true’ slow variable.

References

  1. J. Anderson, A. Ferri, Behavior of a single-degree-of-freedom system with a generalized friction law. J. Sound Vib. 140(2), 287–304 (1990)

    Article  Google Scholar 

  2. J. Argemi, Approche qualitative d’un problème de perturbation singulières dans \(\mathbb {R}^4\), in Equadiff, vol. 78 (1978), pp. 333–340

    Google Scholar 

  3. E. Benoit, Systèmes lents-rapides dans \(\mathbb {R}^3\) et leur canards. Astérisque 109–110, 159–191 (1983)

    Google Scholar 

  4. E. Benoit, J. Callot, F. Diener, M. Diener, Chasse aux canards. Collect. Math. 31–32, 37–119 (1981)

    MATH  Google Scholar 

  5. M. Brøns, M. Krupa, M. Wechselberger, Mixed mode oscillations due to the generalized canard phenomenon, in Fields Institute Communications, vol. 49, pp. 39–63 (Fields Institute, Ontario, 2006)

    Google Scholar 

  6. M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. Osinga, M. Wechselberger, Mixed-mode oscillations with multiple time scales. SIAM Rev. 54(2), 211–288 (2012)

    Article  MathSciNet  Google Scholar 

  7. J. Dietrich, M. Linker, Fault stability under conditions of variable normal stress. Geophys. Res. Lett. 19, 1691–1694 (1992)

    Article  Google Scholar 

  8. F. Dumortier, R. Roussarie, Canard cycles and center manifolds. Mem. Am. Math. Soc. 121(577), x+100 (1996)

    Google Scholar 

  9. E. Harvey, V. Kirk, H. Osinga, J. Sneyd, M. Wechselberger, Understanding anomalous delays in a model of intracellular calcium dynamics. Chaos 20, 045104 (2010)

    Article  MathSciNet  Google Scholar 

  10. C. He, S. Ma, J. Huang, Transition between stable sliding and stick-slip due to variation in slip rate under variable normal stress condition. Geophys. Res. Lett. 25(17), 3235–3238 (1998)

    Article  Google Scholar 

  11. S. Jelbart, M. Wechselberger, Two-stroke relaxation oscillations (2019). arXiv:1905.06539

    Google Scholar 

  12. I. Kosiuk, Relaxation Oscillations in Slow-Fast Systems Beyond the Standard Form. Ph.D. thesis (University of Leipzig, Leipzig, 2012)

    Google Scholar 

  13. K. Kristiansen, Blowup for flat slow manifolds. Nonlinearity 30, 2138–2184 (2017)

    Article  MathSciNet  Google Scholar 

  14. M. Krupa, P. Szmolyan, Relaxation oscillation and canard explosion. J. Differ. Equ. 174(2), 312–368 (2001)

    Article  MathSciNet  Google Scholar 

  15. M. Krupa, M. Wechselberger, Local analysis near a folded saddle-node singularity. J. Differ. Equ. 248, 2841–2888 (2010)

    Article  MathSciNet  Google Scholar 

  16. C. Kuehn, Normal hyperbolicity and unbounded critical manifolds. Nonlinearity 27, 1351 (2014)

    Article  MathSciNet  Google Scholar 

  17. Y. Kuznetsov, Elements of Applied Bifurcation Theory, vol. 112 (Springer, New York, 1995)

    Book  Google Scholar 

  18. X. Meng, G. Huguet, J. Rinzel, Type III excitability, slope sensitivity and coincidence detection. Discrete Contin. Dynam. Syst. 32(8), 2729–2757 (2012)

    Article  MathSciNet  Google Scholar 

  19. A. Milik, P. Szmolyan, Multiple time scales and canards in a chemical oscillator, in Multiple-Time-Scale Dynamical Systems, vol. 122 (IMA, Minneapolis, 1997), pp. 117–140

    Chapter  Google Scholar 

  20. J. Mitry, A Geometric Singular Perturbation Approach to Neural Excitability: Canards and Firing Threshold Manifolds (The University of Sydney, Camperdown, 2016). Ph.D. thesis

    Google Scholar 

  21. J. Mitry, M. Wechselberger, Folded saddles and faux canards. SIAM J. Appl. Dyn. Syst. 16, 546–596 (2017)

    Article  MathSciNet  Google Scholar 

  22. J. Mitry, M. McCarthy, N. Kopell, M. Wechselberger, Excitable neurons, firing threshold manifolds and canards. J. Math. Neurosci., 3(1), 12 (2013)

    Article  MathSciNet  Google Scholar 

  23. V. Petrov, S. Scott, K. Showalter, Mixed-mode oscillations in chemical systems. J. Chem. Phys. 97, 6191–6198 (1992)

    Article  Google Scholar 

  24. J. Rankin, M. Desroches, B. Krauskopf, M. Lowenberg, Canard cycles in aircraft ground dynamics. Nonlinear Dyn. 66, 681–688 (2011)

    Article  Google Scholar 

  25. K.L. Roberts, J. Rubin, M. Wechselberger, Averaging, folded singularities and torus canards: explaining transitions between bursting and spiking in a coupled neuron model. SIAM J. Appl. Dyn. Syst. 14, 1808–1844 (2015)

    Article  MathSciNet  Google Scholar 

  26. P. Szmolyan, M. Wechselberger, Canards in \(\mathbb {R}^3\). J. Differ. Equ. 177(2), 419–453 (2001)

    Google Scholar 

  27. T. Vo, M. Wechselberger, Canards of folded saddle-node type I. SIAM J. Math. Anal. 47, 3235–3283 (2015)

    Article  MathSciNet  Google Scholar 

  28. M. Wechselberger, Existence and bifurcation of canards in \(\mathbb {R}^3\) in the case of a folded node. SIAM J. Appl. Dyn. Syst. 4, 101–139 (2005)

    Article  MathSciNet  Google Scholar 

  29. M. Wechselberger, À propos de canards (Apropos canards). Trans. Am. Math. Soc. 364(6), 3289–3309 (2012)

    Article  MathSciNet  Google Scholar 

  30. M. Wechselberger, J. Mitry, J. Rinzel, Canard theory and excitability, in Nonautonomous Dynamical Systems in the Life Sciences (Springer, Berlin, 2013), pp. 89–132

    Book  Google Scholar 

  31. W. Whiteman, A. Ferri, Displacement-dependent dry friction damping of a beam-like structure. J. Sound Vib. 198, 313–329 (1996)

    Article  Google Scholar 

  32. S. Wieczorek, P. Ashwin, C. Luke, P. Cox, Excitability and ramped systems: the compost-bomb instability. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 467, 1243–1269 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wechselberger, M. (2020). Pseudo Singularities and Canards. In: Geometric Singular Perturbation Theory Beyond the Standard Form. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-36399-4_6

Download citation

Publish with us

Policies and ethics