Skip to main content

Topological Insulators Constructed from Random Point Sets

  • Chapter
  • First Online:
Book cover Geometric Control of Fracture and Topological Metamaterials

Part of the book series: Springer Theses ((Springer Theses))

  • 460 Accesses

Abstract

The discovery that the band structure of electronic insulators may be topologically non-trivial has revealed distinct phases of electronic matter with novel properties. Recently, mechanical lattices have been found to have similarly rich structure in their phononic excitations, giving rise to protected uni-directional edge modes. In all these cases, however, as well as in other topological metamaterials, the underlying structure was finely tuned, be it through periodicity, quasi-periodicity or isostaticity. Here we show that amorphous Chern insulators can be readily constructed from arbitrary underlying structures, including hyperuniform, jammed, quasi-crystalline, and uniformly random point sets. While our findings apply to mechanical and electronic systems alike, we focus on networks of interacting gyroscopes as a model system. Local decorations control the topology of the vibrational spectrum, endowing amorphous structures with protected edge modes—with a chirality of choice. Using a real-space generalization of the Chern number, we investigate the topology of our structures numerically, analytically and experimentally. The robustness of our approach enables the topological design and self-assembly of non-crystalline topological metamaterials on the micro and macro scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Süsstrunk, S.D. Huber, Observation of phononic helical edge states in a mechanical topological insulator. Science 349(6243), 47–50 (2015)

    Article  ADS  Google Scholar 

  2. L.M. Nash, D. Kleckner, A. Read, V. Vitelli, A.M. Turner, W.T.M. Irvine, Topological mechanics of gyroscopic metamaterials. Proc. Nat. Acad. Sci. 112(47), 14495–14500 (2015)

    Article  ADS  Google Scholar 

  3. C.L. Kane, T.C. Lubensky, Topological boundary modes in isostatic lattices. Nat. Phys. 10(1), 39–45 (2013)

    Article  Google Scholar 

  4. N.P. Mitchell, L.M. Nash, D. Hexner, A.M. Turner, W.T.M. Irvine, Amorphous topological insulators constructed from random point sets. Nat. Phys. 14(4), 380–385 (2018)

    Article  Google Scholar 

  5. M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, Photonic floquet topological insulators. Nature 496(7444), 196–200 (2013)

    Article  ADS  Google Scholar 

  6. E. Prodan, C. Prodan, Topological phonon modes and their role in dynamic instability of microtubules. Phys. Rev. Lett. 103(24), 248101 (2009)

    Google Scholar 

  7. P. Wang, L. Lu, K. Bertoldi, Topological phononic crystals with one-way elastic edge waves. Phys. Rev. Lett. 115(10), 104302 (2015)

    Google Scholar 

  8. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger, Experimental realization of the topological Haldane model with ultracold fermions. Nature 515(7526), 237 (2014)

    Article  ADS  Google Scholar 

  9. F.D.M. Haldane, Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “Parity Anomaly”. Phys. Rev. Lett. 61(18), 2015–2018 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Ningyuan, C. Owens, A. Sommer, D. Schuster, J. Simon, Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X 5(2), 021031 (2015)

    Google Scholar 

  11. A.B. Khanikaev, R. Fleury, S.H. Mousavi, A. Alù, Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6, 8260 (2015)

    Article  ADS  Google Scholar 

  12. R.B. Laughlin, Quantized Hall conductivity in two dimensions. Phys. Rev. B 23(10), 5632–5633 (1981)

    Article  ADS  Google Scholar 

  13. C.L. Kane, E.J. Mele, Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95(22), 226801 (2005)

    Google Scholar 

  14. D.M. Sussman, O. Stenull, T.C. Lubensky, Topological boundary modes in jammed matter. Soft Matt. 12(28), 6079–6087 (2016)

    Article  ADS  Google Scholar 

  15. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  16. Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, B. Zhang, Topological acoustics. Phys. Rev. Lett. 114(11), 114301 (2015)

    Google Scholar 

  17. A.S. Meeussen, J. Paulose, V. Vitelli, Geared topological metamaterials with tunable mechanical stability. Phys. Rev. X 6(4), 041029 (2016)

    Google Scholar 

  18. D.J. Thouless, Wannier functions for magnetic sub-bands. J. Phys. C: Solid State Phys. 17(12), L325 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Thonhauser, D. Vanderbilt, Insulator/Chern-insulator transition in the Haldane model. Phys. Rev. B 74(23), 235111 (2006)

    Google Scholar 

  20. M. Florescu, S. Torquato, P.J. Steinhardt, Designer disordered materials with large, complete photonic band gaps. Proc. Natl. Acad. Sci. 106(49), 20658–20663 (2009)

    Article  ADS  Google Scholar 

  21. D. Weaire, M.F. Thorpe, Electronic properties of an amorphous solid. I. A simple tight-binding theory. Phys. Rev. B 4(8), 2508–2520 (1971)

    Google Scholar 

  22. D. Weaire, Existence of a gap in the electronic density of states of a tetrahedrally bonded solid of arbitrary structure. Phys. Rev. Lett. 26(25), 1541–1543 (1971)

    Article  ADS  Google Scholar 

  23. R. Haydock, V. Heine, M.J. Kelly, Electronic structure based on the local atomic environment for tight-binding bands. J. Phys. C: Solid State Phys. 5(20), 2845 (1972)

    Article  ADS  Google Scholar 

  24. A. Kitaev, Anyons in an exactly solved model and beyond. Ann. Phys. 321(1), 2–111 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. R. Bianco, R. Resta, Mapping topological order in coordinate space. Phys. Rev. B 84(24), 241106 (2011)

    Google Scholar 

  26. B.I. Halperin, Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25(4), 2185–2190 (1982)

    Article  ADS  Google Scholar 

  27. L. Fu, C.L. Kane, E.J. Mele, Topological insulators in three dimensions. Phys. Rev. Lett. 98(10), 106803 (2007)

    Google Scholar 

  28. E. Prodan, H. Schulz-Baldes, in Bulk and Boundary Invariants for Complex Topological Insulators. Mathematical Physics Studies (Springer, Cham, 2016)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitchell, N. (2020). Topological Insulators Constructed from Random Point Sets. In: Geometric Control of Fracture and Topological Metamaterials. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-36361-1_6

Download citation

Publish with us

Policies and ethics