Skip to main content

Fracture in Sheets Draped on Curved Surfaces

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Conforming materials to rigid substrates with Gaussian curvature—positive for spheres and negative for saddles—has proven a versatile tool to guide the self-assembly of defects such as scars, pleats, folds, blisters, and liquid crystal ripples. Here, we show how curvature can likewise be used to control material failure and guide the paths of cracks. In our experiments, and unlike in previous studies on cracked plates and shells, we constrained flat elastic sheets to adopt fixed curvature profiles. This constraint provides a geometric tool for controlling fracture behavior: curvature can stimulate or suppress the growth of cracks and steer or arrest their propagation. A simple analytical model captures crack behavior at the onset of propagation, while a two-dimensional phase-field model with an added curvature term successfully captures the crack’s path. Because the curvature-induced stresses are independent of material parameters for isotropic, brittle media, our results apply across scales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.J. Bowick, L. Giomi, Two-dimensional matter: order, curvature and defects. Adv. Phys. 58(5), 449–563 (2009)

    Article  ADS  Google Scholar 

  2. G.A. DeVries, M. Brunnbauer, Y. Hu, A.M. Jackson, B. Long, B.T. Neltner, O. Uzun, B.H. Wunsch, F. Stellacci, Divalent metal nanoparticles. Science 315(5810), 358–361 (2007)

    Article  ADS  Google Scholar 

  3. A.R. Bausch, M.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, D.A. Weitz, Grain boundary scars and spherical crystallography. Science 299(5613), 1716–1718 (2003)

    Article  ADS  Google Scholar 

  4. W.T.M. Irvine, V. Vitelli, P.M. Chaikin, Pleats in crystals on curved surfaces. Nature 468(7326), 947–951 (2010)

    Article  ADS  Google Scholar 

  5. V. Vitelli, J.B. Lucks, D.R. Nelson, Crystallography on curved surfaces. Proc. Nat. Acad. Sci. 103(33), 12323–12328 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. N.P. Mitchell, V. Koning, V. Vitelli, W.T.M. Irvine, Fracture in sheets draped on curved surfaces. Nat. Mater. 16(1), 89–93 (2017)

    Article  ADS  Google Scholar 

  7. G.M. Grason, B. Davidovitch, Universal collapse of stress and wrinkle-to-scar transition in spherically confined crystalline sheets. Proc. Nation. Acad. Sci. 110(32), 12893–12898 (2013)

    Article  ADS  Google Scholar 

  8. D.P. Holmes, A.J. Crosby, Draping films: a Wrinkle to fold transition. Phys. Rev. Lett. 105(3), 038303 (2010)

    Google Scholar 

  9. J. Hure, B. Roman, J. Bico, Wrapping an adhesive sphere with an elastic sheet. Phys. Rev. Lett. 106(17), 174301 (2011)

    Google Scholar 

  10. L.I. Slepyan, Cracks in a bending plate, in Models and Phenomena in Fracture Mechanics. Foundations of Engineering Mechanics (Springer, Berlin, 2002), pp. 359–388

    Google Scholar 

  11. F. Amiri, D. Millán, Y. Shen, T. Rabczuk, M. Arroyo, Phase-field modeling of fracture in linear thin shells. Theor. Appl. Fract. Mec. 69, 102–109 (2014)

    Article  Google Scholar 

  12. S.M. Rupich, F.C. Castro, W.T.M. Irvine, D.V. Talapin, Soft epitaxy of nanocrystal superlattices. Nat. Commun. 5, 5045 (2014)

    Article  ADS  Google Scholar 

  13. M.B. Dusseault, V. Maury, F. Sanfilippo, F.J. Santarelli, Drilling Around Salt: Risks, Stresses, and Uncertainties (American Rock Mechanics Association, New York, 2004)

    Google Scholar 

  14. A.A. Griffith, The Phenomena of rupture and flow in solids. Philos. Trans. Royal Soc. London A: Mathe. Phys. Eng. Sci. 221(582–593), 163–198 (1921)

    Article  ADS  Google Scholar 

  15. R.S. Rivlin, A.G. Thomas, Rupture of rubber. I. characteristic energy for tearing. J. Poly. Sci. 10(3), 291–318 (1953)

    Google Scholar 

  16. L.B. Freund, Dynamic Fracture Mechanics (Cambridge University Press, Cambridge, 1990)

    Book  Google Scholar 

  17. C.-Y. Hui, A.T. Zehnder, Y.K. Potdar, Williams meets von Karman: mode coupling and nonlinearity in the fracture of thin plates. Inter. J. Fract. 93(1–4), 409–429 (1998)

    Google Scholar 

  18. V. Vitelli, A.M. Turner, Anomalous coupling between topological defects and curvature. Phys. Rev. Lett. 93(21), 215301 (2004)

    Google Scholar 

  19. H.M. Westergaard, Bearing pressures and cracks. J. Appl. Mech. Trans. ASME 6, A49–A53 (1939)

    Google Scholar 

  20. B. Cotterell, J.R. Rice, Slightly curved or kinked cracks. Inter. J. Fract. 16(2), 155–169 (1980)

    Article  Google Scholar 

  21. N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity (Springer, Berlin, 1977)

    Book  Google Scholar 

  22. R. Ghelichi, K. Kamrin, Modeling growth paths of interacting crack pairs in elastic media. Soft Matt. 11(40), 7995–8012 (2015)

    Article  ADS  Google Scholar 

  23. T. Fett, Stress intensity factors and T-stress for internally cracked circular disks under various boundary conditions. Eng. Fract. Mech. 68(9), 1119–1136 (2001)

    Article  Google Scholar 

  24. A. Karma, D.A. Kessler, H. Levine, Phase-field model of mode III dynamic fracture. Phys. Rev. Lett. 87(4), 045501 (2001)

    Google Scholar 

  25. R. Spatschek, E. Brener, A. Karma, Phase field modeling of crack propagation. Philos. Maga. 91(1), 75–95 (2011)

    Article  ADS  Google Scholar 

  26. D.R. Nelson, L. Peliti, Fluctuations in membranes with crystalline and hexatic order. J. de Phys. 48(7), 1085–1092 (1987)

    Article  Google Scholar 

  27. H. Henry, H. Levine, Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys. Rev. Lett. 93(10), 105504 (2004)

    Google Scholar 

  28. V. Hakim, A. Karma, Laws of crack motion and phase-field models of fracture. J. Mech. Phys. Solids 57(2), 342–368 (2009)

    Article  ADS  Google Scholar 

  29. H. Henry, Study of the branching instability using a phase field model of inplane crack propagation. Europhys. Lett. 83(1), 16004 (2008)

    Article  ADS  Google Scholar 

  30. L.D. Landau, E.M. Lifshitz, Chapter II-the equilibrium of rods and plates, in Theory of Elasticity, 3rd edn. (Butterworth-Heinemann, Oxford, 1986), pp. 38–86

    Google Scholar 

  31. A. Logg, G.N. Wells, DOLFIN: automated finite element computing. ACM Trans. Math. Softw. 37(2), 20:1–20:28 (2010)

    Article  MathSciNet  Google Scholar 

  32. B.A. Cheeseman, M.H. Santare, The interaction of a curved crack with a circular elastic inclusion. Inter. J. Fract. 103(3), 259–277 (2000)

    Article  Google Scholar 

  33. J.M. Yuk, J. Park, P. Ercius, K. Kim, D.J. Hellebusch, M.F. Crommie, J.Y. Lee, A. Zettl, A.P. Alivisatos, High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336(6077), 61–64 (2012)

    Article  ADS  Google Scholar 

  34. N.J. Price, J.W. Cosgrove, Analysis of Geological Structures (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  35. J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010)

    Article  ADS  Google Scholar 

  36. A. Yuse, M. Sano, Transition between crack patterns in quenched glass plates. Nature 362(6418), 329–331 (1993)

    Article  ADS  Google Scholar 

  37. E. Sharon, E. Efrati, The mechanics of non-Euclidean plates. Soft Matt. 6(22), 5693–5704 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitchell, N. (2020). Fracture in Sheets Draped on Curved Surfaces. In: Geometric Control of Fracture and Topological Metamaterials. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-36361-1_2

Download citation

Publish with us

Policies and ethics