Skip to main content

Photovoltaic-Based Nanomaterials: Synthesis and Characterization

  • Chapter
  • First Online:
Solar Cells

Abstract

Improving the conversion efficiency and reducing cost are the major tasks to make more energy competitive-based photovoltaics and able to replace the traditional fossil energies. In organic/inorganic-based solar cell development, nanotechnology seems to be the most promising branch. Nanostructure materials with large band gap synthesized from III–V and II–VI elements are gaining more attention because of their potential use in emerging energy applications. Nanostructures with different morphologies including nanowires, nanosprings, nanobelts and nanocombs can be prepared. Variations in atomic arrangements to minimize the effect of electrostatic energies produces from different ionic charges on the polar surfaces are the major reason of diversified range of nanostructures. In this book chapter, we will focus on the contribution of different nanomaterials in the advancement of solar cell technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panwar N, Kaushik S, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15(3):1513–1524

    Article  Google Scholar 

  2. Hsieh C-T, Yang B-H, Lin J-Y (2011) One-and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells. Carbon 49(9):3092–3097

    Article  CAS  Google Scholar 

  3. Brennan LJ et al (2011) Carbon nanomaterials for dye-sensitized solar cell applications: a bright future. Adv Energy Mater 1(4):472–485

    Article  CAS  Google Scholar 

  4. Sun H et al (2015) Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ Sci 8(4):1139–1159

    Article  CAS  Google Scholar 

  5. Peet J, Heeger AJ, Bazan GC (2009) “Plastic” solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc Chem Res 42(11):1700–1708

    Article  CAS  Google Scholar 

  6. Luo B, Liu S, Zhi L (2012) Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 8(5):630–646

    Article  CAS  Google Scholar 

  7. Williams R (1983) Metal electrode for amorphous silicon solar cells. Google Patents

    Google Scholar 

  8. Anderson W, Chai Y (1976) Becquerel effect solar cell. Energy Convers 15(3–4):85–94

    Article  CAS  Google Scholar 

  9. Li Y, Zhang JZ (2010) Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev 4(4):517–528

    Article  CAS  Google Scholar 

  10. Chiappafreddo P, Gagliardi A (2010) The photovoltaic market facing the challenge of organic solar cells: economic and technical perspectives. Trans Stud Rev 17(2):346–355

    Article  Google Scholar 

  11. Akl AA, Afify H (2008) Growth, microstructure, optical and electrical properties of sprayed CuInSe2 polycrystalline films. Mater Res Bull 43(6):1539–1548

    Article  CAS  Google Scholar 

  12. Tala-Ighil R (2016) Nanomaterials in solar cells. In: Aliofkhazraei M, Makhlouf ASH (eds) Handbook of nanoelectrochemistry: electrochemical synthesis methods, properties and characterization techniques. Springer, Cham, pp 1251–1270

    Google Scholar 

  13. Cai W, Gong X, Cao Y (2010) Polymer solar cells: recent development and possible routes for improvement in the performance. Sol Energy Mater Sol Cells 94(2):114–127

    Article  CAS  Google Scholar 

  14. Jayawardena KI et al (2013) ‘Inorganics-in-organics’: recent developments and outlook for 4G polymer solar cells. Nanoscale 5(18):8411–8427

    Article  CAS  Google Scholar 

  15. Palmer K, Burtraw D (2005) Cost-effectiveness of renewable electricity policies. Energy Econ 27(6):873–894

    Article  Google Scholar 

  16. Yuhas BD, Yang P (2009) Nanowire-based all oxide solar cells. J Am Chem Soc 131(10):3756–3761

    Article  CAS  Google Scholar 

  17. Fan Z, Razavi H, Do JW, Moriwaki A, Ergen O, Chueh YL, Leu PW et al (2009) Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater 8(8):648

    Article  CAS  Google Scholar 

  18. Neale S et al (2009) Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates

    Google Scholar 

  19. Cho K et al (2011) Molecular monolayers for conformal, nanoscale doping of InP nanopillar photovoltaics. Appl Phys Lett 98(20):203101

    Article  CAS  Google Scholar 

  20. Zhu J et al (2008) Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett 9(1):279–282

    Article  CAS  Google Scholar 

  21. Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123(1):183–184

    Article  CAS  Google Scholar 

  22. Hu L, Chen G (2007) Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett 7(11):3249–3252

    Article  CAS  Google Scholar 

  23. Han SE, Chen G (2010) Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett 10(3):1012–1015

    Article  CAS  Google Scholar 

  24. Han SE, Chen G (2010) Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells. Nano Lett 10(11):4692–4696

    Article  CAS  Google Scholar 

  25. Yu M et al (2012) Recent advances in solar cells based on one-dimensional nanostructure arrays. Nanoscale 4(9):2783–2796

    Article  CAS  Google Scholar 

  26. Peter Y, Cardona M (2010) Fundamentals of semiconductors: physics and materials properties. Springer Science & Business Media

    Google Scholar 

  27. Yu PY, Cardona M (2010) Electrical transport. Fundamentals of semiconductors, pp 203–241

    Chapter  Google Scholar 

  28. Mitzi DB et al (2011) The path towards a high-performance solution-processed kesterite solar cell. Sol Energy Mater Sol Cells 95(6):1421–1436

    Article  CAS  Google Scholar 

  29. Peng X, Wickham J, Alivisatos A (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120(21):5343–5344

    Article  CAS  Google Scholar 

  30. Rogach AL et al (2002) Organization of matter on different size scales: monodisperse nanocrystals and their superstructures. Adv Func Mater 12(10):653–664

    Article  CAS  Google Scholar 

  31. Rabouw FT, de Mello Donega C (2017) Excited-state dynamics in colloidal semiconductor nanocrystals. In: Credi A Editor (ed) Photoactive semiconductor nanocrystal quantum dots: fundamentals and applications. Springer International Publishing, Cham, pp 1–30

    Google Scholar 

  32. Shieh J-M et al (2007) Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer. Appl Phys Lett 90(5):051105

    Article  CAS  Google Scholar 

  33. Cheung C et al (2008) Using thin film transistors to quantify carrier transport properties of amorphous organic semiconductors. Appl Phys Lett 93(8):316

    Article  CAS  Google Scholar 

  34. Bauer T (2011) Thermophotovoltaics: basic principles and critical aspects of system design. Springer Science & Business Media

    Google Scholar 

  35. Modest M (1993) Radiative heat transfer. McGraw-Hill Inc., Hightstown

    Google Scholar 

  36. Compaan AD (2006) Photovoltaics: clean power for the 21st century. Sol Energy Mater Sol Cells 90(15):2170–2180

    Article  CAS  Google Scholar 

  37. Zhang X et al (2009) Electrochemical deposition of quaternary Cu2ZnSnS4 thin films as potential solar cell material. Appl Phys A 94(2):381–386

    Article  CAS  Google Scholar 

  38. Jimbo T, Soga T, Hayashi Y (2005) Development of new materials for solar cells in Nagoya Institute of Technology. Sci Technol Adv Mater 6(1):27–33

    Article  CAS  Google Scholar 

  39. Nazeeruddin MK et al (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123(8):1613–1624

    Article  CAS  Google Scholar 

  40. Nehaoua N, Chergui Y, Mekki DE (2011) A new model for extracting the physical parameters from IV curves of organic and inorganic solar cells. In: Solar cells-silicon wafer-based technologies. InTech

    Google Scholar 

  41. Yu R et al (2012) Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy 1(1):57–72

    Article  CAS  Google Scholar 

  42. Dai G et al (2012) A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film. J Colloid Interface Sci 365(1):46–52

    Article  CAS  Google Scholar 

  43. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859

    Article  CAS  Google Scholar 

  44. Lim J-W et al (2012) Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells. Sol Energy Mater Sol Cells 107:348–354

    Article  CAS  Google Scholar 

  45. Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10(3):1082–1087

    Article  CAS  Google Scholar 

  46. Lee J-Y et al (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8(2):689–692

    Article  CAS  Google Scholar 

  47. Carlson A et al (2012) Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv Mater 24(39):5284–5318

    Article  CAS  Google Scholar 

  48. Chang P-C et al (2004) ZnO nanowires synthesized by vapor trapping CVD method. Chem Mater 16(24):5133–5137

    Article  CAS  Google Scholar 

  49. Calarco R et al (2005) Size-dependent photoconductivity in MBE-grown GaN− nanowires. Nano Lett 5(5):981–984

    Article  CAS  Google Scholar 

  50. Liang Y et al (2005) Band-gap engineering of semiconductor nanowires through composition modulation. J Phys Chem B 109(15):7120–7123

    Article  CAS  Google Scholar 

  51. Zhu D et al (2012) Fabrication of heterogeneous double-ring-like structure arrays by combination of colloidal lithography and controllable dewetting. Langmuir 28(5):2873–2880

    Article  CAS  Google Scholar 

  52. Gao X et al (2004) Carbon nanotubes filled with metallic nanowires. Carbon 42(1):47–52

    Article  CAS  Google Scholar 

  53. Rai SC et al (2015) Piezo-phototronic effect enhanced UV/visible photodetector based on fully wide band gap Type-II ZnO/ZnS core/shell nanowire array. ACS Nano 9(6):6419–6427

    Article  CAS  Google Scholar 

  54. Chen C-Y et al (2017) Enhancing formation rate of highly-oriented silicon nanowire arrays with the assistance of back substrates. Sci Rep 7(1):3164

    Article  CAS  Google Scholar 

  55. Miao X et al (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12(6):2745–2750

    Article  CAS  Google Scholar 

  56. Baker DR, Kamat PV (2009) Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv Func Mater 19(5):805–811

    Article  CAS  Google Scholar 

  57. Paulose M et al (2006) Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J Phys D Appl Phys 39(12):2498

    Article  CAS  Google Scholar 

  58. Kapadia R et al (2012) Nanopillar photovoltaics: materials, processes, and devices. Nano Energy 1(1):132–144

    Article  CAS  Google Scholar 

  59. Thiyagu S, Pei Z, Jhong M-S (2012) Amorphous silicon nanocone array solar cell. Nanoscale Res Lett 7(1):172

    Article  CAS  Google Scholar 

  60. Chang Y-C et al (2009) Controlled growth of ZnO nanopagoda arrays with varied lamination and apex angles. Cryst Growth Des 9(7):3161–3167

    Article  CAS  Google Scholar 

  61. Zhang L et al (2013) Preparation of a hybrid polymer solar cell based on MEH-PPV/ZnO nanorods. J Mater Sci: Mater Electron 24(2):452–456

    CAS  Google Scholar 

  62. Thorat J et al (2011) Nanostructured ZnO hexagons and optical properties. J Mater Sci: Mater Electron 22(4):394–399

    CAS  Google Scholar 

  63. Kim S et al (2003) Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J Am Chem Soc 125(38):11466–11467

    Article  CAS  Google Scholar 

  64. Raffaelle R et al (2005) Quantum dot-single wall carbon nanotube complexes for polymeric solar cells. In: Conference record of the thirty-first IEEE Photovoltaic specialists conference, 2005. IEEE

    Google Scholar 

  65. Milliron DJ et al (2004) Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430(6996):190

    Article  CAS  Google Scholar 

  66. Landi B et al (2005) CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol Energy Mater Sol Cells 87(1–4):733–746

    Article  CAS  Google Scholar 

  67. Che Q et al (2013) Nanoparticles-aided silver front contact paste for crystalline silicon solar cells. J Mater Sci: Mater Electron 24(2):524–528

    CAS  Google Scholar 

  68. Bowers MJ, McBride JR, Rosenthal SJ (2005) White-light emission from magic-sized cadmium selenide nanocrystals. J Am Chem Soc 127(44):15378–15379

    Article  CAS  Google Scholar 

  69. Nirmal M et al (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383(6603):802

    Article  CAS  Google Scholar 

  70. Tala-Ighil R (2013) Simulated multi-crystalline silicon solar cells with aluminum back surface field. Mater Sci Indian J 9(7):277–281

    CAS  Google Scholar 

  71. Duan Y et al (2012) Sn-doped TiO2 photoanode for dye-sensitized solar cells. J Phys Chem C 116(16):8888–8893

    Article  CAS  Google Scholar 

  72. Zhang Y et al (2012) Development of inorganic solar cells by nano-technology. Nano-Micro Lett 4(2):124–134

    Article  CAS  Google Scholar 

  73. Li Y et al (2013) Application of poly(3,4-ethylenedioxythiophene): polystyrenesulfonate in polymer heterojunction solar cells. J Mate Sci 48(9):3528–3534

    Article  CAS  Google Scholar 

  74. Zhang C et al (2017) Efficient perovskite solar cells by combination use of Au nanoparticles and insulating metal oxide. Nanoscale 9(8):2852–2864

    Article  CAS  Google Scholar 

  75. Zhang M et al (2015) Stable and low‐cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly (3‐hexylthiophene) layer as a hole transporter. Chem Eur J 21(1):434–439

    Google Scholar 

  76. Jung HS, Park NG (2015) Perovskite solar cells: from materials to devices. Small 11(1):10–25

    Article  CAS  Google Scholar 

  77. Kumar MH et al (2013) Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun 49(94):11089–11091

    Article  CAS  Google Scholar 

  78. Conings B et al (2014) Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv Mater 26(13):2041–2046

    Article  CAS  Google Scholar 

  79. Edri E et al (2013) High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite. J Phys Chem Lett 4(6):897–902

    Article  CAS  Google Scholar 

  80. Ogomi Y et al (2014) CH3NH3SnxPb(1−x)I3 perovskite solar cells covering up to 1060 nm. J Phys Chem Lett 5(6):1004–1011

    Article  CAS  Google Scholar 

  81. Good P et al (2016) Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators. Sol Energy Mater Sol Cells 144:509–522

    Article  CAS  Google Scholar 

  82. Jacobsson TJ et al (2013) A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ Sci 6(12):3676–3683

    Article  CAS  Google Scholar 

  83. Hamadani BH, Dougherty B (2016) Solar cell characterization. In: Semiconductor materials for solar photovoltaic cells. Springer, pp 229–245

    Google Scholar 

  84. Sinton RA, Cuevas A (2000) A quasi-steady-state open-circuit voltage method for solar cell characterization. In: Proceedings of the 16th European photovoltaic solar energy conference, vol 1152

    Google Scholar 

  85. Repins I et al (2008) 19 9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81 2% fill factor. Prog Photovoltaics Res Appl 16(3):235–239

    Article  CAS  Google Scholar 

  86. Sinton RA, Cuevas A, Stuckings M (1996) Quasi-steady-state photoconductance, a new method for solar cell material and device characterization. In: Conference record of the twenty fifth IEEE photovoltaic specialists conference. IEEE

    Google Scholar 

  87. Ramanathan K et al (2003) Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin‐film solar cells. Prog Photovoltaics Res Appl 11(4):225–230

    Google Scholar 

  88. Fontané X et al (2011) In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications. Appl Phys Lett 98(18):181905

    Article  CAS  Google Scholar 

  89. Stangl R, Leendertz C, Haschke J (2010) Numerical simulation of solar cells and solar cell characterization methods: the open-source on demand program AFORS-HET. In: Solar energy. InTech

    Google Scholar 

  90. Bourgoin J, Zazoui M (2002) Irradiation-induced degradation in solar cell: characterization of recombination centres. Semicond Sci Technol 17(5):453

    Article  CAS  Google Scholar 

  91. Noguchi H et al (1994) Characterization of vacuum-evaporated tin sulfide film for solar cell materials. Sol Energy Mater Sol Cells 35:325–331

    Article  CAS  Google Scholar 

  92. Kim H-S et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Rep 2:591

    Article  CAS  Google Scholar 

  93. Fischer S et al (2010) Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization. J Appl Phys 108(4):044912

    Article  CAS  Google Scholar 

  94. Green MA et al (2011) Solar cell efficiency tables (version 37). Prog Photovoltaics Res Appl 19(1):84–92

    Article  CAS  Google Scholar 

  95. Schmid D, Ruckh M, Schock HW (1996) A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell structures. Sol Energy Mater Sol Cells 41:281–294

    Article  Google Scholar 

  96. Osaka I et al (2012) Synthesis, characterization, and transistor and solar cell applications of a naphthobisthiadiazole-based semiconducting polymer. J Am Chem Soc 134(7):3498–3507

    Article  CAS  Google Scholar 

  97. Todorov TK et al (2013) Solution‐processed Cu (In, Ga)(S, Se)2 absorber yielding a 15.2% efficient solar cell. Prog Photovoltaics Res Appl 21(1):82–87

    Google Scholar 

  98. Carstensen J et al (2003) CELLO: an advanced LBIC measurement technique for solar cell local characterization. Sol Energy Mater Sol Cells 76(4):599–611

    Article  CAS  Google Scholar 

  99. Jani O et al (2007) Design and characterization of GaN∕ In GaN solar cells. Appl Phys Lett 91(13):132117

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akhtar, K. et al. (2020). Photovoltaic-Based Nanomaterials: Synthesis and Characterization. In: Sharma, S., Ali, K. (eds) Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-36354-3_6

Download citation

Publish with us

Policies and ethics